BF算法
BF 算法中的 BF 是 Brute Force 的缩写,中文叫作暴力匹配算法,也叫朴素匹配算法。
我们在主串中,检查起始位置分别是0、1、2…n-m且长度为m的n-m+1个子串,看有没有跟模式串匹配的。最坏情况时间复杂度是 O(n*m)。
RK 算法
RK 算法的全称叫 Rabin-Karp 算法,是由它的两位发明者 Rabin 和 Karp 的名字来命名的。
RK 算法的思路是这样的:我们通过哈希算法对主串中的n-m+1个子串分别求哈希值,然后逐个与模式串的哈希值比较大小。如果某个子串的哈希值与模式串相等,那就说明对应的子串和模式串匹配了(这里先不考虑哈希冲突的问题,后面我们会讲到)。因为哈希值是一个数字,数字之间比较是否相等是非常快速的,所以模式串和子串比较的效率就提高了。
BM(Boyer-Moore)算法
BM 算法原理分析
1.坏字符规则
BM算法的匹配顺序比较特别,它是按照模式串下标从大到小的顺序,倒着匹配的。从模式串的末尾往前倒着匹配,当发现某个字符没法匹配的时候。把这个没有匹配的字符叫作坏字符(主串中的字符)。
2.好后缀规则
所谓某个字符串s的后缀子串,就是最后一个字符跟s对齐的子串,比如abc的后缀子串就包括c, bc。所谓前缀子串,就是起始字符跟s对齐的子串,比如abc的前缀子串有a,ab。我们从好后缀的后缀子串中,找一个最长的并且能跟模式串的前缀子串匹配的,假设是{v},然后将模式串滑动到如图所示的位置。
原则
当模式串和主串中的某个字符不匹配的时候,如何选择用好后缀规则还是坏字符规则,来计算模式串往后滑动的位数?
我们可以分别计算好后缀和坏字符往后滑动的位数,然后取两个数中最大的,作为模式串往后滑动的位数。这种处理方法还可以避免我们前面提到的,根据坏字符规则,计算得到的往后滑动的位数,有可能是负数的情况。
BM算法代码实现
public class BM {
private static final int SIZE = 256; // 全局变量或成员变量
private void generateBC(char[] b, int m, int[] bc) {
for (int i = 0; i < SIZE; ++i) {
bc[i] = -1; // 初始化bc
}
for (int i = 0; i < m; ++i) {
int ascii = (int) b[i]; // 计算 b[i] 的 ASCII 值
bc[ascii] = i;
}
}
// a,b 表示主串和模式串;n,m 表示主串和模式串的长度。
public int bm(char[] a, int n, char[] b, int m) {
int[] bc = new int[SIZE]; // 记录模式串中每个字符最后出现的位置
generateBC(b, m, bc); // 构建坏字符哈希表
int[] suffix = new int[m];
boolean[] prefix = new boolean[m];
generateGS(b, m, suffix, prefix);
int i = 0; // j 表示主串与模式串匹配的第一个字符
while (i <= n - m) {
int j;
for (j = m - 1; j >= 0; --j) { // 模式串从后往前匹配
if (a[i+j] != b[j]) break; // 坏字符对应模式串中的下标是 j
}
if (j < 0) {
return i; // 匹配成功,返回主串与模式串第一个匹配的字符的位置
}
int x = j - bc[(int)a[i+j]];
int y = 0;
if (j < m-1) { // 如果有好后缀的话
y = moveByGS(j, m, suffix, prefix);
}
i = i + Math.max(x, y);
}
return -1;
}
// j 表示坏字符对应的模式串中的字符下标 ; m 表示模式串长度
private int moveByGS(int j, int m, int[] suffix, boolean[] prefix) {
int k = m - 1 - j; // 好后缀长度
if (suffix[k] != -1) return j - suffix[k] +1;
for (int r = j+2; r <= m-1; ++r) {
if (prefix[m-r] == true) {
return r;
}
}
return m;
}
// b 表示模式串,m 表示长度,suffix,prefix 数组事先申请好了
private void generateGS(char[] b, int m, int[] suffix, boolean[] prefix) {
for (int i = 0; i < m; ++i) { // 初始化
suffix[i] = -1;
prefix[i] = false;
}
for (int i = 0; i < m - 1; ++i) { // b[0, i]
int j = i;
int k = 0; // 公共后缀子串长度
while (j >= 0 && b[j] == b[m - 1 - k]) { // 与 b[0, m-1] 求公共后缀子串
--j;
++k;
suffix[k] = j + 1; // j+1 表示公共后缀子串在 b[0, i] 中的起始下标
}
if (j == -1)
prefix[k] = true; // 如果公共后缀子串也是模式串的前缀子串
}
}
}
网友评论