美文网首页
ThreadPoolExecutor任务调用流程

ThreadPoolExecutor任务调用流程

作者: 04040d1599e6 | 来源:发表于2018-12-10 23:16 被阅读0次

    由于最近在写个爬虫相关的,所以对线程池相关的了解的一下。结合之前的使用以及书本上看的一些东西,在这儿做一些总结。顺便吐槽一下功能欠缺的Future。

    线程池:

    JDK自己也有提供一个线程池工具类java.util.concurrent.Executors
    这个类中实现了如下一些方法:

    Executors Method

    如图中都是构建线程池的方法。其中分两个类。
    newWorkStealingPool是通过调用ForkJoinPool来实现的。
    其余的构造是调用ThreadPoolExecutor来实现的。

    ThreadPoolExecutor

    接下来看一下这集万千宠爱于一身的类的构造方法:

        /**
         * Creates a new {@code ThreadPoolExecutor} with the given initial
         * parameters.
         *
         * @param corePoolSize the number of threads to keep in the pool, even
         *        if they are idle, unless {@code allowCoreThreadTimeOut} is set
         * @param maximumPoolSize the maximum number of threads to allow in the
         *        pool
         * @param keepAliveTime when the number of threads is greater than
         *        the core, this is the maximum time that excess idle threads
         *        will wait for new tasks before terminating.
         * @param unit the time unit for the {@code keepAliveTime} argument
         * @param workQueue the queue to use for holding tasks before they are
         *        executed.  This queue will hold only the {@code Runnable}
         *        tasks submitted by the {@code execute} method.
         * @param threadFactory the factory to use when the executor
         *        creates a new thread
         * @param handler the handler to use when execution is blocked
         *        because the thread bounds and queue capacities are reached
         * @throws IllegalArgumentException if one of the following holds:<br>
         *         {@code corePoolSize < 0}<br>
         *         {@code keepAliveTime < 0}<br>
         *         {@code maximumPoolSize <= 0}<br>
         *         {@code maximumPoolSize < corePoolSize}
         * @throws NullPointerException if {@code workQueue}
         *         or {@code threadFactory} or {@code handler} is null
         */
        public ThreadPoolExecutor(int corePoolSize,
                                  int maximumPoolSize,
                                  long keepAliveTime,
                                  TimeUnit unit,
                                  BlockingQueue<Runnable> workQueue,
                                  ThreadFactory threadFactory,
                                  RejectedExecutionHandler handler) {
            if (corePoolSize < 0 ||
                maximumPoolSize <= 0 ||
                maximumPoolSize < corePoolSize ||
                keepAliveTime < 0)
                throw new IllegalArgumentException();
            if (workQueue == null || threadFactory == null || handler == null)
                throw new NullPointerException();
            this.corePoolSize = corePoolSize;
            this.maximumPoolSize = maximumPoolSize;
            this.workQueue = workQueue;
            this.keepAliveTime = unit.toNanos(keepAliveTime);
            this.threadFactory = threadFactory;
            this.handler = handler;
        }
    
    
    参数名 参数说明
    corePoolSize 核心线程池大小
    maximumPoolSize 最大线程池大小,当core用尽,queue排满,就会根据max来创建新的临时的线程(临时工)
    keepAliveTime 线程池中超过corePoolSize的线程数的线程的最大空闲存活时间
    unit 上一个时间属性的单位
    workQueue 当core线程用完了,会先把任务塞进该阻塞队列
    threadFactory 线程创建工厂类
    handler 看着名字就知道这是拒绝策略,当core线程池满了,线程队列满了,最大线程池大小也满了的时候,就会触发拒绝策略

    拒绝策略 RejectedExecutionHandler

    JDK自带的拒绝策略有:
    ThreadPoolExecutor.AbortPolicy
    线程池中的数量等于最大线程数时、直接抛出RejectedExecutionException
    ThreadPoolExecutor.CallerRunsPolicy
    重试执行当前的任务,交由调用者线程来执行任务
    ThreadPoolExecutor.DiscardOldestPolicy
    抛弃线程池中最后一个要执行的任务,并执行新传入的任务
    ThreadPoolExecutor.DiscardPolicy
    看着名字就知道,直接抛弃

    偶尔我们可能也有自己的拒绝策略,比如实现当满了的时候等待。就可以如笔者下列创建的线程池这样写。

    private ExecutorService synExecutorPool = new ThreadPoolExecutor(5, 5, 60, TimeUnit.SECONDS, new LinkedBlockingQueue<>(1), new ThreadFactory() {
            @Override
            public Thread newThread(Runnable r) {
                return new Thread(r, "synExecutor Thread : " + (threadNum++));
            }
        },
    //拒绝策略
     (Runnable r, ThreadPoolExecutor executor) -> {
            if (!executor.isShutdown()) {
                try {
                    //阻塞添加该任务到queue,直到有资源被空出来
                    executor.getQueue().put(r);
                } catch (InterruptedException e) {
                    logger.error(e.toString(), e);
                    Thread.currentThread().interrupt();
                }
            }
        });
    

    ThreadPoolExcutor Worker

    任务的执行,一般都是调用方法

    public void execute(Runnable command)
    

    OR

    public <T> Future<T> submit(Callable<T> task)
    

    execute方法在执行的时候就会去判断corePoolSize Queue 以及maximumPoolSize 来决定是否添加新的worker来执行,或者入队,或者添加新的thread,或者应该reject 。
    这里我们就要说到Worker了。
    Worker是ThreadPoolExecutor的一个内部类,实现了AbstractQueuedSynchronizer抽象类。

        /**
         * Class Worker mainly maintains interrupt control state for
         * threads running tasks, along with other minor bookkeeping.
         * This class opportunistically extends AbstractQueuedSynchronizer
         * to simplify acquiring and releasing a lock surrounding each
         * task execution.  This protects against interrupts that are
         * intended to wake up a worker thread waiting for a task from
         * instead interrupting a task being run.  We implement a simple
         * non-reentrant mutual exclusion lock rather than use
         * ReentrantLock because we do not want worker tasks to be able to
         * reacquire the lock when they invoke pool control methods like
         * setCorePoolSize.  Additionally, to suppress interrupts until
         * the thread actually starts running tasks, we initialize lock
         * state to a negative value, and clear it upon start (in
         * runWorker).
         */
    private final class Worker extends AbstractQueuedSynchronizer implements Runnable
    

    通过该类的描述,我们可以知道这个类是主要控制线程执行任务时候的interrupt操作。它集成了AQS,实现了非重入锁,以此保护一个正在执行任务的worker不被打断。为啥要不直接使用ReentrantLock,是因为不想Worker task在setCorePoolSize这种线程池控制方法调用时能重新获取到锁。
    构造方法

            Worker(Runnable firstTask) {
                setState(-1); // inhibit interrupts until runWorker
                this.firstTask = firstTask;
                this.thread = getThreadFactory().newThread(this);
            }
    

    Run

    /** Delegates main run loop to outer runWorker  */
      public void run() {
            runWorker(this);
      }
        final void runWorker(Worker w) {
            Thread wt = Thread.currentThread();
            Runnable task = w.firstTask;
            w.firstTask = null;
            w.unlock(); // allow interrupts
            boolean completedAbruptly = true;
            try {
               //循环获取任务。注意getTask是一个阻塞调用。
                while (task != null || (task = getTask()) != null) {
                    w.lock();
                    // If pool is stopping, ensure thread is interrupted;
                    // if not, ensure thread is not interrupted.  This
                    // requires a recheck in second case to deal with
                    // shutdownNow race while clearing interrupt
                    if ((runStateAtLeast(ctl.get(), STOP) ||
                         (Thread.interrupted() &&
                          runStateAtLeast(ctl.get(), STOP))) &&
                        !wt.isInterrupted())
                        wt.interrupt();
                    try {
                        beforeExecute(wt, task);
                        Throwable thrown = null;
                        try {
                            //执行线程的run方法
                            task.run();
                        } catch (RuntimeException x) {
                            thrown = x; throw x;
                        } catch (Error x) {
                            thrown = x; throw x;
                        } catch (Throwable x) {
                            thrown = x; throw new Error(x);
                        } finally {
                            afterExecute(task, thrown);
                        }
                    } finally {
                        task = null;
                        w.completedTasks++;
                        w.unlock();
                    }
                }
                completedAbruptly = false;
            } finally {
                processWorkerExit(w, completedAbruptly);
            }
        }
    

    RUN方法调用的是ThreadPoolExecutor的runWorker方法。其中while循环的条件调用getTask()获取任务。

    线程池核心状态ctl

    读ThreadPoolExecutor源码之前,先了解一下ctl。它是ThreadPoolExecutor中的一个属性。

    private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
    

    他是个AtomicInteger, Integer,32位。低29位记录线程池中线程数,通过高3位表示线程池的运行状态:
    1、RUNNING:-1 << COUNT_BITS,即高3位为111,该状态的线程池会接收新任务,并处理阻塞队列中的任务;
    2、SHUTDOWN: 0 << COUNT_BITS,即高3位为000,该状态的线程池不会接收新任务,但会处理阻塞队列中的任务;
    3、STOP : 1 << COUNT_BITS,即高3位为001,该状态的线程不会接收新任务,也不会处理阻塞队列中的任务,而且会中断正在运行的任务;
    4、TIDYING : 2 << COUNT_BITS,即高3位为010, 所有的任务都已经终止;
    5、TERMINATED: 3 << COUNT_BITS,即高3位为011, terminated()方法已经执行完成

    getTask

        private Runnable getTask() {
            boolean timedOut = false; // Did the last poll() time out?
            for (;;) {
                //例行检查 线程池状态。
                int c = ctl.get();
                int rs = runStateOf(c);
                // Check if queue empty only if necessary.
                if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
                    decrementWorkerCount();
                    return null;
                }
                int wc = workerCountOf(c);
                //判断是否需要剔除worker
                boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;
                if ((wc > maximumPoolSize || (timed && timedOut))
                    && (wc > 1 || workQueue.isEmpty())) {
                    //通过CAS减少ctl的值,也就是更新worker的数量
                    if (compareAndDecrementWorkerCount(c))
                        return null;
                    continue;
                }
                try {
                    //从队列中获取任务 返回。如果设定是可以有删除的worker,就poll keepAliveTIme的时候,看是否有任务。如果没有任务就在下一轮for循环中删除
                    Runnable r = timed ?
                        workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
                        workQueue.take();
                    if (r != null)
                        return r;
                    timedOut = true;
                } catch (InterruptedException retry) {
                    timedOut = false;
                }
            }
        }
    

    在getTask中通过poll和take从workQueue中获取任务,顺便判断是否需要减少coreSize的数量,以及判断空闲时间是否达到了需要减少maxSize的数量。

    worker何时被调用的呢

    其实从一开始,worker就已经被启用了。在调用submit 方法的时候,就有调用方法addWorker,添加一个新的worker。

    private boolean addWorker(Runnable firstTask, boolean core) {
            retry:
            for (;;) {
                //例行检查线程池状态
                int c = ctl.get();
                int rs = runStateOf(c);
                // Check if queue empty only if necessary.
                if (rs >= SHUTDOWN &&
                    ! (rs == SHUTDOWN &&
                       firstTask == null &&
                       ! workQueue.isEmpty()))
                    return false;
    
                for (;;) {
                    int wc = workerCountOf(c);
                    if (wc >= CAPACITY ||
                        wc >= (core ? corePoolSize : maximumPoolSize))
                        return false;
                    //CAS增加数量
                    if (compareAndIncrementWorkerCount(c))
                        break retry;
                    c = ctl.get();  // Re-read ctl
                    if (runStateOf(c) != rs)
                        continue retry;
                    // else CAS failed due to workerCount change; retry inner loop
                }
            }
            //上面的是一些判断,校验逻辑,下面的才是worker生成,运行
            boolean workerStarted = false;
            boolean workerAdded = false;
            Worker w = null;
            try {
                //new一个新的worker,加入firstTask
                w = new Worker(firstTask);
                //拿到创建worker时候创建的线程
                final Thread t = w.thread;
                if (t != null) {
                    final ReentrantLock mainLock = this.mainLock;
                    mainLock.lock();
                    try {
                        // Recheck while holding lock.
                        // Back out on ThreadFactory failure or if
                        // shut down before lock acquired.
                        int rs = runStateOf(ctl.get());
    
                        if (rs < SHUTDOWN ||
                            (rs == SHUTDOWN && firstTask == null)) {
                            if (t.isAlive()) // precheck that t is startable
                                throw new IllegalThreadStateException();
                            workers.add(w);
                            int s = workers.size();
                            if (s > largestPoolSize)
                                largestPoolSize = s;
                            workerAdded = true;
                        }
                    } finally {
                        mainLock.unlock();
                    }
                    if (workerAdded) {
                        //开启线程。也就是执行worker.run方法
                        t.start();
                        workerStarted = true;
                    }
                }
            } finally {
                if (! workerStarted)
                    addWorkerFailed(w);
            }
            return workerStarted;
        }
    

    到这儿所有的事情都串起来了。
    ThreadPoolExecutor.submit -> addWorker() -> Worker.thread.start()-> ThreadPoolExecutor.runWorker()->getTask()->workQueue.take()->task.run()
    在task.run()的前后还有两个空实现方法
    beforeExecute 和 afterExecute 提供给用户实现自己的线程池的时候进行扩展

    问题

    有同学问我为啥在调用getTask函数的时候还会有wc > maximumPoolSize的判断。当时我也懵逼了一下。然后我发现有个线程池完成初始化之后是可以调用set函数来重置corePoolSize和maximumSize的。

        public void setCorePoolSize(int corePoolSize) {
            if (corePoolSize < 0)
                throw new IllegalArgumentException();
            int delta = corePoolSize - this.corePoolSize;
            this.corePoolSize = corePoolSize;
            if (workerCountOf(ctl.get()) > corePoolSize)
                interruptIdleWorkers();
            else if (delta > 0) {
                // We don't really know how many new threads are "needed".
                // As a heuristic, prestart enough new workers (up to new
                // core size) to handle the current number of tasks in
                // queue, but stop if queue becomes empty while doing so.
                int k = Math.min(delta, workQueue.size());
                while (k-- > 0 && addWorker(null, true)) {
                    if (workQueue.isEmpty())
                        break;
                }
            }
        }
    
        public void setMaximumPoolSize(int maximumPoolSize) {
            if (maximumPoolSize <= 0 || maximumPoolSize < corePoolSize)
                throw new IllegalArgumentException();
            this.maximumPoolSize = maximumPoolSize;
            if (workerCountOf(ctl.get()) > maximumPoolSize)
                interruptIdleWorkers();
        }
    

    对吧。这就很好理解了撒。在调用setMaximumPoolSize的时候会就会出现wc>maximumPoolSize的情况。然后会调用interruptIdleWorkers来中断回收一些空闲的workers。

    相关文章

      网友评论

          本文标题:ThreadPoolExecutor任务调用流程

          本文链接:https://www.haomeiwen.com/subject/nmnpqqtx.html