美文网首页ios
理解RunLoop

理解RunLoop

作者: 羽裳有涯 | 来源:发表于2019-01-18 10:59 被阅读17次

    前言

    RunLoop 是 iOS 和 OSX 开发中非常基础的一个概念,这篇文章将从 CFRunLoop 的源码入手,介绍 RunLoop 的概念以及底层实现原理。之后会介绍一下在iOS 中,苹果是如何利用 RunLoop 实现自动释放池延迟回调触摸事件屏幕刷新等功能的。

    Index
    RunLoop 的概念
    RunLoop 与线程的关系
    RunLoop 对外的接口
    RunLoop 的 Mode
    RunLoop 的内部逻辑
    RunLoop 的底层实现
    苹果用 RunLoop 实现的功能
    AutoreleasePool
    事件响应
    手势识别
    界面更新
    定时器
    PerformSelecter
    关于GCD
    关于网络请求
    RunLoop 的实际应用举例
    AFNetworking
    AsyncDisplayKit

    RunLoop 的概念

    一般来讲,一个线程一次只能执行一个任务,执行完成后线程就会退出。如果我们需要一个机制,让线程能随时处理事件但并不退出,通常的代码逻辑是这样的:

    function loop() {
        initialize();
        do {
            var message = get_next_message();
            process_message(message);
        } while (message != quit);
    }
    

    这种模型通常被称作 Event LoopEvent Loop 在很多系统和框架里都有实现,比如 Node.js 的事件处理,比如 Windows 程序的消息循环,再比如 OSX/iOS 里的RunLoop。实现这种模型的关键点在于:如何管理事件/消息,如何让线程在没有处理消息时休眠以避免资源占用、在有消息到来时立刻被唤醒

    所以,RunLoop 实际上就是一个对象,这个对象管理了其需要处理的事件和消息,并提供了一个入口函数来执行上面 Event Loop 的逻辑。线程执行了这个函数后,就会一直处于这个函数内部 “接受消息->等待->处理” 的循环中,直到这个循环结束(比如传入 quit 的消息),函数返回。

    OSX/iOS 系统中,提供了两个这样的对象:NSRunLoopCFRunLoopRef
    CFRunLoopRef 是在 CoreFoundation 框架内的,它提供了纯 C 函数的 API,所有这些 API 都是线程安全的。
    NSRunLoop 是基于 CFRunLoopRef 的封装,提供了面向对象的 API,但是这些 API 不是线程安全的。

    CFRunLoopRef 的代码是开源的,你可以在这里 http://opensource.apple.com/tarballs/CF/ 下载到整个 CoreFoundation 的源码来查看。

    (Update: Swift 开源后,苹果又维护了一个跨平台的 CoreFoundation 版本:https://github.com/apple/swift-corelibs-foundation/,这个版本的源码可能和现有 iOS 系统中的实现略不一样,但更容易编译,而且已经适配了 Linux/Windows。)

    RunLoop 与线程的关系

    首先,iOS 开发中能遇到两个线程对象: pthread_tNSThread。过去苹果有份文档标明了NSThread 只是pthread_t 的封装,但那份文档已经失效了,现在它们也有可能都是直接包装自最底层的 mach thread。苹果并没有提供这两个对象相互转换的接口,但不管怎么样,可以肯定的是pthread_tNSThread 是一一对应的。比如,你可以通过 pthread_main_thread_np()[NSThread mainThread] 来获取主线程;也可以通过 pthread_self()[NSThread currentThread] 来获取当前线程。CFRunLoop是基于 pthread 来管理的。

    苹果不允许直接创建 RunLoop,它只提供了两个自动获取的函数:CFRunLoopGetMain()CFRunLoopGetCurrent()。 这两个函数内部的逻辑大概是下面这样:

    /// 全局的Dictionary,key 是 pthread_t, value 是 CFRunLoopRef
    static CFMutableDictionaryRef loopsDic;
    /// 访问 loopsDic 时的锁
    static CFSpinLock_t loopsLock;
     
    /// 获取一个 pthread 对应的 RunLoop。
    CFRunLoopRef _CFRunLoopGet(pthread_t thread) {
        OSSpinLockLock(&loopsLock);
        
        if (!loopsDic) {
            // 第一次进入时,初始化全局Dic,并先为主线程创建一个 RunLoop。
            loopsDic = CFDictionaryCreateMutable();
            CFRunLoopRef mainLoop = _CFRunLoopCreate();
            CFDictionarySetValue(loopsDic, pthread_main_thread_np(), mainLoop);
        }
        
        /// 直接从 Dictionary 里获取。
        CFRunLoopRef loop = CFDictionaryGetValue(loopsDic, thread));
        
        if (!loop) {
            /// 取不到时,创建一个
            loop = _CFRunLoopCreate();
            CFDictionarySetValue(loopsDic, thread, loop);
            /// 注册一个回调,当线程销毁时,顺便也销毁其对应的 RunLoop。
            _CFSetTSD(..., thread, loop, __CFFinalizeRunLoop);
        }
        
        OSSpinLockUnLock(&loopsLock);
        return loop;
    }
     
    CFRunLoopRef CFRunLoopGetMain() {
        return _CFRunLoopGet(pthread_main_thread_np());
    }
     
    CFRunLoopRef CFRunLoopGetCurrent() {
        return _CFRunLoopGet(pthread_self());
    }
    

    从上面的代码可以看出,线程和RunLoop之间是一一对应的,其关系是保存在一个全局的Dictionary 里。线程刚创建时并没有 RunLoop,如果你不主动获取,那它一直都不会有。RunLoop的创建是发生在第一次获取时,RunLoop 的销毁是发生在线程结束时。你只能在一个线程的内部获取其 RunLoop(主线程除外)。

    RunLoop 对外的接口

    CoreFoundation 里面关于 RunLoop 有5个类:

    CFRunLoopRef
    CFRunLoopModeRef
    CFRunLoopSourceRef
    CFRunLoopTimerRef
    CFRunLoopObserverRef

    其中CFRunLoopModeRef 类并没有对外暴露,只是通过 CFRunLoopRef 的接口进行了封装。他们的关系如下:

    图片.png
    一个RunLoop包含若干个 Mode,每个 Mode又包含若干个 Source/Timer/Observer。每次调用 RunLoop 的主函数时,只能指定其中一个Mode,这个Mode被称作CurrentMode。如果需要切换Mode,只能退出Loop,再重新指定一个Mode 进入。这样做主要是为了分隔开不同组的 Source/Timer/Observer,让其互不影响。

    CFRunLoopSourceRef是事件产生的地方。Source有两个版本:Source0Source1
    Source0只包含了一个回调(函数指针),它并不能主动触发事件。使用时,你需要先调用 CFRunLoopSourceSignal(source),将这个 Source 标记为待处理,然后手动调用 CFRunLoopWakeUp(runloop) 来唤醒 RunLoop,让其处理这个事件。
    Source1包含了一个mach_port 和一个回调(函数指针),被用于通过内核和其他线程相互发送消息。这种Source能主动唤醒 RunLoop 的线程,其原理在下面会讲到。

    CFRunLoopTimerRef 是基于时间的触发器,它和 NSTimertoll-free bridged 的,可以混用。其包含一个时间长度和一个回调(函数指针)。当其加入到RunLoop 时,RunLoop会注册对应的时间点,当时间点到时,RunLoop会被唤醒以执行那个回调。

    CFRunLoopObserverRef 是观察者,每个 Observer都包含了一个回调(函数指针),当 RunLoop 的状态发生变化时,观察者就能通过回调接受到这个变化。可以观测的时间点有以下几个

    typedef CF_OPTIONS(CFOptionFlags, CFRunLoopActivity) {
        kCFRunLoopEntry         = (1UL << 0), // 即将进入Loop
        kCFRunLoopBeforeTimers  = (1UL << 1), // 即将处理 Timer
        kCFRunLoopBeforeSources = (1UL << 2), // 即将处理 Source
        kCFRunLoopBeforeWaiting = (1UL << 5), // 即将进入休眠
        kCFRunLoopAfterWaiting  = (1UL << 6), // 刚从休眠中唤醒
        kCFRunLoopExit          = (1UL << 7), // 即将退出Loop
    };
    

    上面的 Source/Timer/Observer 被统称为mode item,一个 item 可以被同时加入多个 mode。但一个item被重复加入同一个 mode时是不会有效果的。如果一个 mode 中一个item 都没有,则 RunLoop 会直接退出,不进入循环。

    RunLoop 的 Mode

    CFRunLoopModeCFRunLoop的结构大致如下:

    struct __CFRunLoopMode {
        CFStringRef _name;            // Mode Name, 例如 @"kCFRunLoopDefaultMode"
        CFMutableSetRef _sources0;    // Set
        CFMutableSetRef _sources1;    // Set
        CFMutableArrayRef _observers; // Array
        CFMutableArrayRef _timers;    // Array
        ...
    };
     
    struct __CFRunLoop {
        CFMutableSetRef _commonModes;     // Set
        CFMutableSetRef _commonModeItems; // Set<Source/Observer/Timer>
        CFRunLoopModeRef _currentMode;    // Current Runloop Mode
        CFMutableSetRef _modes;           // Set
        ...
    };
    

    这里有个概念叫 “CommonModes”:一个 Mode 可以将自己标记为”Common”属性(通过将其 ModeName 添加到RunLoop“commonModes” 中)。每当 RunLoop内容发生变化时,RunLoop 都会自动将 _commonModeItems里的 Source/Observer/Timer 同步到具有 “Common”标记的所有Mode里。

    应用场景举例:主线程的 RunLoop 里有两个预置的 ModekCFRunLoopDefaultModeUITrackingRunLoopMode。这两个 Mode都已经被标记为”Common”属性。DefaultMode 是 App 平时所处的状态,TrackingRunLoopMode 是追踪ScrollView 滑动时的状态。当你创建一个 Timer并加到 DefaultMode时,Timer 会得到重复回调,但此时滑动一个TableView时,RunLoop 会将 mode 切换为 TrackingRunLoopMode,这时 Timer 就不会被回调,并且也不会影响到滑动操作。

    有时你需要一个 Timer,在两个 Mode 中都能得到回调,一种办法就是将这个 Timer 分别加入这两个Mode。还有一种方式,就是将 Timer 加入到顶层的RunLoop“commonModeItems” 中。”commonModeItems”RunLoop 自动更新到所有具有”Common”属性的 Mode 里去。

    CFRunLoop对外暴露的管理Mode 接口只有下面2个:

    CFRunLoopAddCommonMode(CFRunLoopRef runloop, CFStringRef modeName);
    CFRunLoopRunInMode(CFStringRef modeName, ...);
    

    Mode 暴露的管理 mode item 的接口有下面几个:

    CFRunLoopAddSource(CFRunLoopRef rl, CFRunLoopSourceRef source, CFStringRef modeName);
    CFRunLoopAddObserver(CFRunLoopRef rl, CFRunLoopObserverRef observer, CFStringRef modeName);
    CFRunLoopAddTimer(CFRunLoopRef rl, CFRunLoopTimerRef timer, CFStringRef mode);
    CFRunLoopRemoveSource(CFRunLoopRef rl, CFRunLoopSourceRef source, CFStringRef modeName);
    CFRunLoopRemoveObserver(CFRunLoopRef rl, CFRunLoopObserverRef observer, CFStringRef modeName);
    CFRunLoopRemoveTimer(CFRunLoopRef rl, CFRunLoopTimerRef timer, CFStringRef mode);
    

    你只能通过 mode name 来操作内部的mode,当你传入一个新的 mode nameRunLoop内部没有对应 mode时,RunLoop会自动帮你创建对应的CFRunLoopModeRef。对于一个 RunLoop 来说,其内部的mode只能增加不能删除。

    苹果公开提供的 Mode 有两个:kCFRunLoopDefaultMode (NSDefaultRunLoopMode)UITrackingRunLoopMode,你可以用这两个 Mode Name 来操作其对应的 Mode

    同时苹果还提供了一个操作Common 标记的字符串:kCFRunLoopCommonModes (NSRunLoopCommonModes),你可以用这个字符串来操作 Common Items,或标记一个 Mode“Common”。使用时注意区分这个字符串和其他 mode name

    RunLoop 的内部逻辑

    根据苹果在文档里的说明,RunLoop 内部的逻辑大致如下:

    图片.png

    其内部代码整理如下 (太长了不想看可以直接跳过去,后面会有说明):

    /// 用DefaultMode启动
    void CFRunLoopRun(void) {
        CFRunLoopRunSpecific(CFRunLoopGetCurrent(), kCFRunLoopDefaultMode, 1.0e10, false);
    }
     
    /// 用指定的Mode启动,允许设置RunLoop超时时间
    int CFRunLoopRunInMode(CFStringRef modeName, CFTimeInterval seconds, Boolean stopAfterHandle) {
        return CFRunLoopRunSpecific(CFRunLoopGetCurrent(), modeName, seconds, returnAfterSourceHandled);
    }
     
    /// RunLoop的实现
    int CFRunLoopRunSpecific(runloop, modeName, seconds, stopAfterHandle) {
        
        /// 首先根据modeName找到对应mode
        CFRunLoopModeRef currentMode = __CFRunLoopFindMode(runloop, modeName, false);
        /// 如果mode里没有source/timer/observer, 直接返回。
        if (__CFRunLoopModeIsEmpty(currentMode)) return;
        
        /// 1. 通知 Observers: RunLoop 即将进入 loop。
        __CFRunLoopDoObservers(runloop, currentMode, kCFRunLoopEntry);
        
        /// 内部函数,进入loop
        __CFRunLoopRun(runloop, currentMode, seconds, returnAfterSourceHandled) {
            
            Boolean sourceHandledThisLoop = NO;
            int retVal = 0;
            do {
     
                /// 2. 通知 Observers: RunLoop 即将触发 Timer 回调。
                __CFRunLoopDoObservers(runloop, currentMode, kCFRunLoopBeforeTimers);
                /// 3. 通知 Observers: RunLoop 即将触发 Source0 (非port) 回调。
                __CFRunLoopDoObservers(runloop, currentMode, kCFRunLoopBeforeSources);
                /// 执行被加入的block
                __CFRunLoopDoBlocks(runloop, currentMode);
                
                /// 4. RunLoop 触发 Source0 (非port) 回调。
                sourceHandledThisLoop = __CFRunLoopDoSources0(runloop, currentMode, stopAfterHandle);
                /// 执行被加入的block
                __CFRunLoopDoBlocks(runloop, currentMode);
     
                /// 5. 如果有 Source1 (基于port) 处于 ready 状态,直接处理这个 Source1 然后跳转去处理消息。
                if (__Source0DidDispatchPortLastTime) {
                    Boolean hasMsg = __CFRunLoopServiceMachPort(dispatchPort, &msg)
                    if (hasMsg) goto handle_msg;
                }
                
                /// 通知 Observers: RunLoop 的线程即将进入休眠(sleep)。
                if (!sourceHandledThisLoop) {
                    __CFRunLoopDoObservers(runloop, currentMode, kCFRunLoopBeforeWaiting);
                }
                
                /// 7. 调用 mach_msg 等待接受 mach_port 的消息。线程将进入休眠, 直到被下面某一个事件唤醒。
                /// • 一个基于 port 的Source 的事件。
                /// • 一个 Timer 到时间了
                /// • RunLoop 自身的超时时间到了
                /// • 被其他什么调用者手动唤醒
                __CFRunLoopServiceMachPort(waitSet, &msg, sizeof(msg_buffer), &livePort) {
                    mach_msg(msg, MACH_RCV_MSG, port); // thread wait for receive msg
                }
     
                /// 8. 通知 Observers: RunLoop 的线程刚刚被唤醒了。
                __CFRunLoopDoObservers(runloop, currentMode, kCFRunLoopAfterWaiting);
                
                /// 收到消息,处理消息。
                handle_msg:
     
                /// 9.1 如果一个 Timer 到时间了,触发这个Timer的回调。
                if (msg_is_timer) {
                    __CFRunLoopDoTimers(runloop, currentMode, mach_absolute_time())
                } 
     
                /// 9.2 如果有dispatch到main_queue的block,执行block。
                else if (msg_is_dispatch) {
                    __CFRUNLOOP_IS_SERVICING_THE_MAIN_DISPATCH_QUEUE__(msg);
                } 
     
                /// 9.3 如果一个 Source1 (基于port) 发出事件了,处理这个事件
                else {
                    CFRunLoopSourceRef source1 = __CFRunLoopModeFindSourceForMachPort(runloop, currentMode, livePort);
                    sourceHandledThisLoop = __CFRunLoopDoSource1(runloop, currentMode, source1, msg);
                    if (sourceHandledThisLoop) {
                        mach_msg(reply, MACH_SEND_MSG, reply);
                    }
                }
                
                /// 执行加入到Loop的block
                __CFRunLoopDoBlocks(runloop, currentMode);
                
     
                if (sourceHandledThisLoop && stopAfterHandle) {
                    /// 进入loop时参数说处理完事件就返回。
                    retVal = kCFRunLoopRunHandledSource;
                } else if (timeout) {
                    /// 超出传入参数标记的超时时间了
                    retVal = kCFRunLoopRunTimedOut;
                } else if (__CFRunLoopIsStopped(runloop)) {
                    /// 被外部调用者强制停止了
                    retVal = kCFRunLoopRunStopped;
                } else if (__CFRunLoopModeIsEmpty(runloop, currentMode)) {
                    /// source/timer/observer一个都没有了
                    retVal = kCFRunLoopRunFinished;
                }
                
                /// 如果没超时,mode里没空,loop也没被停止,那继续loop。
            } while (retVal == 0);
        }
        
        /// 10. 通知 Observers: RunLoop 即将退出。
        __CFRunLoopDoObservers(rl, currentMode, kCFRunLoopExit);
    }
    

    可以看到,实际上RunLoop 就是这样一个函数,其内部是一个 do-while 循环。当你调用CFRunLoopRun() 时,线程就会一直停留在这个循环里;直到超时或被手动停止,该函数才会返回。

    RunLoop 的底层实现

    从上面代码可以看到,RunLoop 的核心是基于 mach port 的,其进入休眠时调用的函数是 mach_msg()。为了解释这个逻辑,下面稍微介绍一下 OSX/iOS 的系统架构。

    图片.png
    苹果官方将整个系统大致划分为上述4个层次:
    应用层包括用户能接触到的图形应用,例如 Spotlight、Aqua、SpringBoard等。
    应用框架层即开发人员接触到的Cocoa 等框架。
    核心框架层包括各种核心框架、OpenGL 等内容。
    Darwin 即操作系统的核心,包括系统内核、驱动、Shell 等内容,这一层是开源的,其所有源码都可以在 opensource.apple.com 里找到。

    我们在深入看一下 Darwin 这个核心的架构:

    图片.png
    其中,在硬件层上面的三个组成部分:Mach、BSD、IOKit(还包括一些上面没标注的内容),共同组成了 XNU 内核。
    XNU 内核的内环被称作 Mach,其作为一个微内核,仅提供了诸如处理器调度、IPC (进程间通信)等非常少量的基础服务。
    BSD 层可以看作围绕 Mach 层的一个外环,其提供了诸如进程管理、文件系统和网络等功能。
    IOKit 层是为设备驱动提供了一个面向对象(C++)的一个框架。

    Mach 本身提供的 API 非常有限,而且苹果也不鼓励使用 Mach 的 API,但是这些API非常基础,如果没有这些API的话,其他任何工作都无法实施。在 Mach 中,所有的东西都是通过自己的对象实现的,进程、线程和虚拟内存都被称为”对象”。和其他架构不同, Mach 的对象间不能直接调用,只能通过消息传递的方式实现对象间的通信。”消息”是 Mach 中最基础的概念,消息在两个端口 (port) 之间传递,这就是 Mach 的 IPC (进程间通信) 的核心。

    Mach 的消息定义是在 <mach/message.h>头文件的,很简单:

    typedef struct {
      mach_msg_header_t header;
      mach_msg_body_t body;
    } mach_msg_base_t;
     
    typedef struct {
      mach_msg_bits_t msgh_bits;
      mach_msg_size_t msgh_size;
      mach_port_t msgh_remote_port;
      mach_port_t msgh_local_port;
      mach_port_name_t msgh_voucher_port;
      mach_msg_id_t msgh_id;
    } mach_msg_header_t;
    

    一条 Mach 消息实际上就是一个二进制数据包 (BLOB),其头部定义了当前端口local_port和目标端口 remote_port
    发送和接受消息是通过同一个 API 进行的,其 option 标记了消息传递的方向:

    mach_msg_return_t mach_msg(
                mach_msg_header_t *msg,
                mach_msg_option_t option,
                mach_msg_size_t send_size,
                mach_msg_size_t rcv_size,
                mach_port_name_t rcv_name,
                mach_msg_timeout_t timeout,
                mach_port_name_t notify);
    

    为了实现消息的发送和接收,mach_msg() 函数实际上是调用了一个 Mach 陷阱 (trap),即函数mach_msg_trap(),陷阱这个概念在 Mach 中等同于系统调用。当你在用户态调用 mach_msg_trap() 时会触发陷阱机制,切换到内核态;内核态中内核实现的 mach_msg() 函数会完成实际的工作,如下图:


    图片.png

    这些概念可以参考维基百科: System_callTrap_(computing)

    RunLoop 的核心就是一个mach_msg() (见上面代码的第7步),RunLoop 调用这个函数去接收消息,如果没有别人发送 port消息过来,内核会将线程置于等待状态。例如你在模拟器里跑起一个 iOS 的 App,然后在 App 静止时点击暂停,你会看到主线程调用栈是停留在 mach_msg_trap() 这个地方。

    关于具体的如何利用 mach port 发送信息,可以看看 NSHipster 这一篇文章,或者这里的中文翻译 。

    关于Mach的历史可以看看这篇很有趣的文章:Mac OS X 背后的故事(三)Mach 之父 Avie Tevanian

    相关文章

      网友评论

        本文标题:理解RunLoop

        本文链接:https://www.haomeiwen.com/subject/nowgdqtx.html