美文网首页
2018-10-09

2018-10-09

作者: carpediemmlf | 来源:发表于2018-10-09 20:59 被阅读0次
  • Curl of a vector field

\vec{\nabla} \times \vec{E} = \left | \begin{array}{cccc} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial }{\partial z} \\ {E_x} & {E_y} & {E_z} \end{array} \right |

  • \sum (\vec{\nabla}\times\vec{A})\cdot{\rm d \vec{S}}

  • evaluate the curl of a vector field at a point and dot it with some unit vector, the result is the line integral per unit area of the vector field around an infinitesimal closed loop that is perpendicular to the unit vector

  • Electric monopoles
    V= \frac{q}{4\pi\epsilon_0r}
    \vec{E} = \frac{q}{4\pi\epsilon_0r^2}\hat{r}
    with radial field lines and spherical equipotential surfaces

  • Electric dipoles
    V(r,\theta) = \frac{\vec{p}\cdot\hat{r}}{4\pi\epsilon_0r^2}
    \vec{E}(\vec{r}) = -\vec{\nabla}V = -[\hat{r}\frac{\partial V}{\partial r} + \hat{\theta}\frac{1}{r}\frac{\partial V}{\partial \theta}]

which evaluates to

\vec{E}(r, \theta) = \frac{p}{4\pi\epsilon_0r^3}(\hat{r}2\cos\theta + \hat{theta}\sin \theta)

if p = p_0\sin\omega t then the \vec{E} field oscillates and generate electric magnetic waves

  • torque on a diploe in a uniform field
    \vec{G} = \vec{p}\times\vec{E}

  • energy of a dipole in uniform field
    U = -\vec{p}\cdot\vec{E}

  • force on a dipole on a general electric field: taylor expand around the E_- for E_+

\vec{F} = (\vec{p}\cdot\vec{\nabla})\vec{E}

  • using \vec{\nabla}\times\vec{E} = 0 and that \vec{p} is time independent
    \vec{F} = \vec{\nabla}(\vec{p}\cdot\vec{E})
    which interestingly is
    \vec{F} = - \vec{\nabla}(U)

相关文章

网友评论

      本文标题:2018-10-09

      本文链接:https://www.haomeiwen.com/subject/nppyaftx.html