美文网首页进击的Python程序员工具癖
机器学习三剑客之Matplotlab

机器学习三剑客之Matplotlab

作者: zhaoolee | 来源:发表于2018-01-03 17:47 被阅读432次
    matplotlib
    Matplotlib 是Python 2D绘图领域的基础套件,它让使用者将数据图形化,并提供多样化的输出格式。这里将会以四个小案例探索Matplotlib的常见用法

    绘制折线图

    折线图
    import matplotlib.pyplot as plt
    import random
    # 保证生成的图片在浏览器内显示
    %matplotlib inline
    # 保证能正常显示中文(Mac)
    plt.rcParams['font.family'] = ['Arial Unicode MS']
    
    # 模拟海南一天的温度变化
    
    # 生成x轴的24小时
    hainan_x = [h for h in range(0, 24)]
    
    # 生成y轴的温度随机值(15, 25)
    hainan_y = [random.randint(15, 25) for t in range(0, 24)]
    
    # 设置画板属性
    plt.figure(figsize = (10, 8), dpi = 100)
    
    # 往画板绘图
    plt.plot(hainan_x, hainan_y, label="海南")
    
    # 模拟北京一天内温度的变化
    
    # 生成x轴的24小时
    beijing_x = [h for h in range(0, 24)]
    
    # 生成y轴的温度随机值(5, 10)
    beijing_y = [random.randint(5, 10) for t in range(0, 24)]
    
    # 往画板绘图
    plt.plot(beijing_x, beijing_y, label="北京")
    
    
    # 模拟河北一天内温度的变化
    hebei_x = beijing_x
    hebei_y = [random.randint(1, 5) for t in range(0, 24)]
    # 自定义绘制属性: 颜色color="#0c8ac5", linestyle"-"""--""-.":", 线宽linewidth, 透明度alpha
    plt.plot(hebei_x, hebei_y, label="河北",color="#823384", linestyle=":", linewidth=3, alpha=0.3)
    
    
    # 坐标轴显示设置
    
    
    
    # 生成24小时的描述
    x_ = [x_ for x_ in range(0, 24)]
    x_desc = ["{}时".format(x_desc) for x_desc in x_]
    
    # 设置x轴显示 24小时
    plt.xticks(x_, x_desc)
    
    # 生成10至30度的描述
    y_ = [y_ for y_ in range(0, 30)][::2]
    y_desc = ["{}℃".format(y_desc) for y_desc in y_]
    
    
    # 设置y轴显示温度描述
    plt.yticks(y_, y_desc)
    
    # 指定x y轴的名称
    plt.xlabel("时间")
    plt.ylabel("温度")
    
    # 指定标题
    plt.title("一天内温度的变化")
    
    # 显示图例
    plt.legend(loc="best")
     
    # 将数据生成图片, 保存到当前目录下
    plt.savefig("./t.png")
    # 在浏览器内展示图片
    plt.show()
    

    绘制条形图

    名侦探柯南主要人物年龄
    import matplotlib.pyplot as plt
    import random
    # 保证生成的图片在浏览器内显示
    %matplotlib inline
    # 保证能正常显示中文(Mac)
    plt.rcParams['font.family'] = ['Arial Unicode MS']
    
    # 条形图绘制名侦探柯南主要角色年龄
    role_list = ["柯南", "毛利兰", "灰原哀", "琴酒","贝尔摩德", "伏特加", "赤井秀一", "目暮十三"]
    role_age = [7, 17, 7, 34, 32, 30, 27, 46]
    # 实际年龄
    role_ture_age = [18, 17, 18, 34, 45, 30, 27, 46]
    
    x = [i for i in range(1, len(role_list)+1)]
    
    y = role_age
    y2 =role_ture_age
    
    # 设置画板属性
    plt.figure(figsize = (15, 8), dpi = 100)
    
    # width以x为基准,向右为正,向左为负(如果多了,就需要为基准x加减响应的数值)
    plt.bar(x, y, width= -0.3, label="现实年龄", color="#509839")
    plt.bar(x, y2, width = 0.3, label="实际年龄", color="#c03035")
    
    x_ = [i for i in range(0, len(role_list)+1)]
    x_desc = ["{}".format(x_desc) for x_desc in role_list]
    x_desc.insert(0, "")
    
    y_ = range(0, 50)[::5]
    y_desc = ["{}岁".format(y_desc) for y_desc in range(0, 50)][::5]
    
    # x轴的数值和描述
    plt.xticks(x_, x_desc)
    plt.yticks(y_, y_desc)
    
    plt.xlabel("角色姓名")
    plt.ylabel("年龄")
    plt.title("名侦探柯南主要角色年龄(部分)")
    plt.legend(loc="best")
    plt.savefig("./mzt.png")
    plt.show()
    

    直方图

    IMDB
    import matplotlib.pyplot as plt
    import random
    
    # 保证能正常显示中文
    plt.rcParams['font.family'] = ['Arial Unicode MS']
    
    # 时长数据
    time = [131,  98, 125, 131, 124, 139, 131, 117, 128, 108, 135, 138, 131, 102, 107, 114, 119, 128, 121, 142, 127, 130, 124, 101, 110, 116, 117, 110, 128, 128, 115,  99, 136, 126, 134,  95, 138, 117, 111,78, 132, 124, 113, 150, 110, 117,  86,  95, 144, 105, 126, 130,126, 130, 126, 116, 123, 106, 112, 138, 123,  86, 101,  99, 136,123, 117, 119, 105, 137, 123, 128, 125, 104, 109, 134, 125, 127,105, 120, 107, 129, 116, 108, 132, 103, 136, 118, 102, 120, 114,105, 115, 132, 145, 119, 121, 112, 139, 125, 138, 109, 132, 134,156, 106, 117, 127, 144, 139, 139, 119, 140,  83, 110, 102,123,107, 143, 115, 136, 118, 139, 123, 112, 118, 125, 109, 119, 133,112, 114, 122, 109, 106, 123, 116, 131, 127, 115, 118, 112, 135,115, 146, 137, 116, 103, 144,  83, 123, 111, 110, 111, 100, 154,136, 100, 118, 119, 133, 134, 106, 129, 126, 110, 111, 109, 141,120, 117, 106, 149, 122, 122, 110, 118, 127, 121, 114, 125, 126,114, 140, 103, 130, 141, 117, 106, 114, 121, 114, 133, 137,  92,121, 112, 146,  97, 137, 105,  98, 117, 112,  81,  97, 139, 113,134, 106, 144, 110, 137, 137, 111, 104, 117, 100, 111, 101, 110,105, 129, 137, 112, 120, 113, 133, 112,  83,  94, 146, 133, 101,131, 116, 111,  84, 137, 115, 122, 106, 144, 109, 123, 116, 111,111, 133, 150]
    max_time = max(time)
    min_time = min(time)
    # 指定分组宽度
    width = 5
    # 指定分组数量
    num_bins = int((max_time - min_time)/2)
    # 直方图统计电影时长频数
    plt.figure(figsize=(15, 8), dpi=80)
    
    # 绘制直方图
    plt.hist(time, num_bins, color="#509839",normed=1)
    
    # 指定显示刻度的个数 
    x_ = [i for i in range(min_time, max_time+1)]
    plt.xticks(x_[::width])
    
    # 显示网格
    plt.grid(True, linestyle="--", alpha=0.5)
    
    # 指定标题
    plt.title("Top250的IMDB电影时长统计")
    plt.savefig("./IMDB.png")
    plt.show()
    

    饼图

    pro_learn
    import matplotlib.pyplot as plt
    import random
    
    # 保证能正常显示中文(Mac)
    plt.rcParams['font.family'] = ['Arial Unicode MS']
    
    # 学习时间分配
    pro_name = ["C++", "Python", "Java", "Go", "Swift"]
    pro_time = [10, 15, 5, 3, 1]
    
    # 画饼
    plt.pie(pro_time, labels=pro_name, autopct="%3.2f%%", colors=["#ea6f5a", "#509839", "#0c8ac5", "#d29922", "#fdf6e3"])
    
    # 指定标题
    plt.title("学习时间分配")
    
    # 保证为图形为正圆
    plt.axis("equal")
    
    # 显示图示
    plt.legend(loc="best")
    plt.savefig("./pro_learn.png")
    plt.show()
    

    相关文章

      网友评论

      本文标题:机器学习三剑客之Matplotlab

      本文链接:https://www.haomeiwen.com/subject/nqffnxtx.html