美文网首页
第11章 面向对象第三讲

第11章 面向对象第三讲

作者: 圣堂刺客_x | 来源:发表于2019-10-04 12:12 被阅读0次

1 接口

1.1 接口概念

  接口是功能的集合,同样可看做是一种数据类型,是比抽象类更为抽象的”类”。
  接口只描述所应该具备的方法,并没有具体实现,具体的实现由接口的实现类(相当于接口的子类)来完成。这样将功能的定义与实现分离,优化了程序设计。
请记住:一切事物均有功能,即一切事物均有接口。
根据以上含义,数据类型大致可以分为基本数据类型、引用数据类型和接口数据类型

1.2 接口的定义

  与定义类的class不同,接口定义时需要使用interface关键字。
  定义接口所在的仍为.java文件,虽然声明时使用的为interface关键字的编译后仍然会产生.class文件。这点可以让我们将接口看做是一种只包含了功能声明的特殊类。
定义格式:

public interface 接口名 {
        抽象方法1;
        抽象方法2;
        抽象方法3;
}

使用interface代替了原来的class,其他步骤与定义类相同:
  1、接口中的方法均为公共访问的抽象方法
  2、接口中无法定义普通的成员变量,接口中定义的都是常量,public static
接口 MyInterFace.java

/*
    定义接口
        使用关键字interface  接口名字
    接口定义:
        成员方法,全部抽象,不能定义带有方法体的方法
    定义抽象方法:
        public abstract 返回值类型 方法名(参数类别);
        
    定义接口的变量:固定格式
        public static final 数据类型 变量 = 值;
*/
public interface MyInterFace{
    //接口的变量,定义为常量
    public static final int a = 1
    //接口的方法都是抽象方法
    public abstract void function();
}

1.3 类实现接口

  类与接口的关系为实现关系,即类实现接口。实现的动作类似继承,只是关键字不同,实现使用implements
  其他类(实现类)实现接口后,就相当于声明:”我应该具备这个接口中的功能”。实现类仍然需要重写方法以实现具体的功能。
格式:

class 类 implements 接口 {
    重写接口中方法
} 

  在类实现接口后,该类就会将接口中的抽象方法继承过来,此时该类需要重写该抽象方法,完成具体的逻辑。
  接口中定义功能,当需要具有该功能时,可以让类实现该接口,只声明了应该具备该方法,是功能的声明。
  在具体实现类中重写方法,实现功能,是方法的具体实现。
于是,通过以上两个动作将功能的声明与实现便分开了。(此时请重新思考:类是现实事物的描述,接口是功能的集合。
类实现接口 MyInterFaceImpl.java

/*
    定义类,实现接口,重写接口中的抽象方法
    
    关键字  implements
    public class 类名 implements 接口{
        重写接口中的抽象方法
    } 
*/
public class MyInterFaceImpl implements MyInterFace{
    public void function(){
        System.out.println("实现类,重写接口抽象方法");
    }
}

1.4 接口中成员的特点

  1、接口中可以定义变量,但是变量必须有固定的修饰符修饰,public static final 所以接口中的变量也称之为常量,其值不能改变。后面我们会讲解static与final关键字加了static的变量可以被 类.变量直接调用
  2、接口中可以定义方法,方法也有固定的修饰符,public abstract
  3、接口不可以创建对象。
  4、子类必须覆盖掉接口中所有的抽象方法后,子类才可以实例化。否则子类是一个抽象类。
接口类MyInterFace.java

public interface MyInterFace{
    //接口的变量,定义为常量
    public static final int a = 1;
    //接口的方法都是抽象方法
    public abstract void function();
}

接口实现类MyInterFaceImpl.java

public class MyInterFaceImpl implements MyInterFace{
    //被static修饰的变量可以被类直接调用
    public static void main(String[] args){
        System.out.println(MyInterFace.a);
    }
    
    public void function(){
        System.out.println("实现类,重写接口抽象方法");
    }
}

如果实现类只实现了接口的一部分方法,那么实现类必须是抽象类。

/*
    实现接口的类,只实现一部分,那么这个类必须是抽象类
*/
public abstract class MyInterFaceImpl implements MyInterFace{
    //只实现一部分
    public void function(){
        System.out.println("实现类,重写接口抽象方法");
    }
    //一部分未实现
    public abstract void function1();
}

1.5 接口的多实现

  了解了接口的特点后,那么想想为什么要定义接口,使用抽象类描述也没有问题,接口到底有啥用呢?
  接口最重要的体现:解决多继承的弊端。将多继承这种机制在java中通过多实现完成了。

interface Fu1{
    void show1();
}
interface Fu2{
    void show2();
}
class Zi implements Fu1,Fu2{// 多实现。同时实现多个接口。
    public void show1(){}
    public void show2(){}
}

怎么解决多继承的弊端呢?
  弊端:多继承时,当多个父类中有相同功能时,子类调用会产生不确定性。
  其实核心原因就是在于多继承父类中功能有主体,而导致调用运行时,不确定运行哪个主体内容。
为什么多实现能解决了呢?
  因为接口中的功能都没有方法体,由子类来明确。

1.6 类继承类同时实现接口

  接口和类之间可以通过实现产生关系,同时也学习了类与类之间可以通过继承产生关系。当一个类已经继承了一个父类,它又需要扩展额外的功能,这时接口就派上用场了。
  子类通过继承父类扩展功能,通过继承扩展的功能都是子类应该具备的基础功能。如果子类想要继续扩展其他类中的功能呢?这时通过实现接口来完成。

class Fu {
    public void show(){}
}
interface Inter {
    pulbic abstract void show1();
}
class Zi extends Fu implements Inter {
    public void show1() {
    }
}

接口的出现避免了单继承的局限性。父类中定义的事物的基本功能。接口中定义的事物的扩展功能。

1.7 接口之间的多继承

  学习类的时候,知道类与类之间可以通过继承产生关系,接口和类之间可以通过实现产生关系,那么接口与接口之间会有什么关系。
多个接口之间可以使用extends进行继承。

interface Fu1{
    void show();
}
interface Fu2{
    void show1();
}
interface Fu3{
    void show2();
}
interface Zi extends Fu1,Fu2,Fu3{
    void show3();
}

在开发中如果多个接口中存在相同方法,这时若有个类实现了这些接口,那么就要实现接口中的方法,由于接口中的方法是抽象方法,子类实现后也不会发生调用的不确定性。

1.8 接口的思想

  前面学习了接口的代码体现,现在来学习接口的思想,接下里从生活中的例子进行说明。
  举例:我们都知道电脑上留有很多个插口,而这些插口可以插入相应的设备,这些设备为什么能插在上面呢?主要原因是这些设备在生产的时候符合了这个插口的使用规则,否则将无法插入接口中,更无法使用。发现这个插口的出现让我们使用更多的设备。
总结:接口在开发中的它好处
  1、接口的出现扩展了功能。
  2、接口其实就是暴漏出来的规则。
  3、接口的出现降低了耦合性,即设备与设备之间实现了解耦。

接口的出现方便后期使用和维护,一方是在使用接口(如电脑),一方在实现接口(插在插口上的设备)。例如:笔记本使用这个规则(接口),电脑外围设备实现这个规则(接口)。

1.9 接口和抽象的区别

  明白了接口思想和接口的用法后,接口和抽象类的区别是什么呢?接口在生活体现也基本掌握,那在程序中接口是如何体现的呢?
  通过实例进行分析和代码演示抽象类和接口的用法。
1、举例:

犬:
        行为:
        吼叫;
        吃饭;
缉毒犬:
        行为:
        吼叫;
        吃饭;
        缉毒;

2、思考:
  由于犬分为很多种类,他们吼叫和吃饭的方式不一样,在描述的时候不能具体化,也就是吼叫和吃饭的行为不能明确。当描述行为时,行为的具体动作不能明确,这时,可以将这个行为写为抽象行为,那么这个类也就是抽象类。
  可是当缉毒犬有其他额外功能时,而这个功能并不在这个事物的体系中。这时可以让缉毒犬具备犬科自身特点的同时也有其他额外功能,可以将这个额外功能定义接口中。
如下代码演示:

interface 缉毒{
    public abstract void 缉毒();
}
//定义犬科的这个提醒的共性功能
abstract class 犬科{
    public abstract void 吃饭();
    public abstract void 吼叫();
}
// 缉毒犬属于犬科一种,让其继承犬科,获取的犬科的特性,
//由于缉毒犬具有缉毒功能,那么它只要实现缉毒接口即可,
这样即保证缉毒犬具备犬科的特性,也拥有了缉毒的功能
class 缉毒犬 extends 犬科 implements 缉毒{

    public void 缉毒() {
    }
    void 吃饭() {
    }
    void 吼叫() {
    }
}

3、通过上面的例子总结接口和抽象类的区别:
相同点:
  都位于继承的顶端,用于被其他类实现或继承;
  都不能直接实例化对象;
  都包含抽象方法,其子类都必须覆写这些抽象方法;
区别:
  抽象类为部分方法提供实现,避免子类重复实现这些方法,提高代码重用性;接口只能包含抽象方法;
  一个类只能继承一个直接父类(可能是抽象类),却可以实现多个接口;(接口弥补了Java的单继承)
  抽象类是这个事物中应该具备的你内容, 继承体系是一种 is..a关系
  接口是这个事物中的额外内容,继承体系是一种 like..a关系

二者的选用:
  优先选用接口,尽量少用抽象类;
  需要定义子类的行为,又要为子类提供共性功能时才选用抽象类;

2 多态

2.1 多态概述

  多态是继封装、继承之后,面向对象的第三大特性。
  现实事物经常会体现出多种形态,如学生,学生是人的一种,则一个具体的同学张三既是学生也是人,即出现两种形态。
  Java作为面向对象的语言,同样可以描述一个事物的多种形态。如Student类继承了Person类,一个Student的对象便既是Student,又是Person。
  Java中多态的代码体现在一个子类对象(实现类对象)既可以给这个子类(实现类对象)引用变量赋值,又可以给这个子类(实现类对象)的父类(接口)变量赋值。
  如Student类可以为Person类的子类。那么一个Student对象既可以赋值给一个Student类型的引用,也可以赋值给一个Person类型的引用。
  最终多态体现为父类引用变量可以指向子类对象。
  多态的前提是必须有子父类关系或者类实现接口关系,否则无法完成多态。
  在使用多态后的父类引用变量调用方法时,会调用子类重写后的方法

2.2 多态的定义与使用格式

多态的定义格式:就是父类的引用变量指向子类对象

父类类型  变量名 = new 子类类型();
变量名.方法名();

普通类多态定义的格式

父类 变量名 = new 子类();
如: class Fu {}
     class Zi extends Fu {}
    //类的多态使用
      Fu f = new Zi();

抽象类多态定义的格式

抽象类 变量名 = new 抽象类子类();
如:  abstract class Fu {
         public abstract void method();
         }

        class Zi extends Fu {
        public void method(){
              System.out.println(“重写父类抽象方法”);
                }
        }

        //类的多态使用
        Fu fu= new Zi();

接口多态定义的格式

接口 变量名 = new 接口实现类();
如: interface Fu {
             public abstract void method();
            }

      class Zi implements Fu {
          public void method(){
                    System.out.println(“重写接口抽象方法”);
              }
      }

//接口的多态使用
Fu fu = new Zi();

注意事项
同一个父类的方法会被不同的子类重写。在调用方法时,调用的为各个子类重写后的方法。

2.3 多态-成员的特点

  掌握了多态的基本使用后,那么多态出现后类的成员有啥变化呢?前面学习继承时,我们知道子父类之间成员变量有了自己的特定变化,那么当多态出现后,成员变量在使用上有没有变化呢?
多态出现后会导致子父类中的成员有微弱的变化
多态成员变量
  当子父类中出现同名的成员变量时,多态调用该变量时:
  编译时期:参考的是引用型变量所属的类中是否有被调用的成员变量。没有,编译失败。
  运行时期:也是调用引用型变量所属的类中的成员变量。
  简单记:编译和运行都参考等号的左边。编译运行看左边。
多态成员方法
  编译时期:参考引用变量所属的类,如果没有类中没有调用的方法,编译失败。
  运行时期:参考引用变量所指的对象所属的类,并运行对象所属类中的成员方法。
  简而言之:编译看左边,运行看右边。
父类Fu.java

public class Fu{
    int a = 1;
    public void show(){
        System.out.println("调用父类方法");
    }
}

子类Zi.java

public class Zi extends Fu{
    int a = 2;
    public void show(){
        System.out.println("调用子类方法");
    }
}

测试类TestDemo.java

/*
    多态中,成员特点
    
    成员变量
        编译的时候,参考父类中有没有这个变量,如果有编译成功,没有编译失败
        运行的时候运行的是父类中的变量
        
    成员方法
        编译的时候,参考父类中有没有这个方法,如果有编译成功,没有编译失败
        运行的时候,运行的是子类的重写方法
*/
public class TestDemo{
    public static void main(String[] args){
        Fu f = new Zi();
        System.out.println(f.a);
        f.show();
    }
}
image.png

2.4 instanceof关键字

  我们可以通过instanceof关键字来判断某个对象是否属于某种数据类型。如学生的对象属于学生类,学生的对象也属于人类。
使用格式:

boolean  b  = 对象  instanceof  数据类型;

代码实例

public class TestDemo{
    public static void main(String[] args){
        Fu f = new Zi();
        Zi z = new Zi();
        
        boolean b1 = f instanceof Fu;
        boolean b2 = z instanceof Fu;
        boolean b3 = f instanceof Zi;
        boolean b4 = z instanceof Zi;
        
        System.out.println(b1);
        System.out.println(b2);
        System.out.println(b3);
        System.out.println(b4);
        
    }
}
image.png

2.5 多态-转型

多态的转型分为向上转型与向下转型两种:
向上转型:当有子类对象赋值给一个父类引用时,便是向上转型,多态本身就是向上转型的过程。(自动转型)
使用格式:

父类类型  变量名 = new 子类类型();
如:Person p = new Student();

向下转型:一个已经向上转型的子类对象可以使用强制类型转换的格式,将父类引用转为子类引用,这个过程是向下转型。如果是直接创建父类对象,是无法向下转型的!
使用格式:

子类类型 变量名 = (子类类型) 父类类型的变量;
Person p = new Person();
Student stu = (Student) p;  //变量p 实际上指向Student对象

3 笔记本电脑案例

3.1 案例介绍

  定义USB接口(具备开启功能、关闭功能),笔记本要使用USB设备,即笔记本在生产时需要预留可以插入USB设备的USB接口,即就是笔记本具备使用USB设备的功能,但具体是什么USB设备,笔记本并不关心,只要符合USB规格的设备都可以。鼠标和键盘要想能在电脑上使用,那么鼠标和键盘也必须遵守USB规范,不然鼠标和键盘的生产出来无法使用
进行描述笔记本类,实现笔记本使用USB鼠标、USB键盘
  USB接口,包含开启功能、关闭功能
  笔记本类,包含运行功能、关机功能、使用USB设备功能
  鼠标类,要符合USB接口
  键盘类,要符合USB接口

3.2 案例需求分析

阶段一:
  使用笔记本,笔记本有运行功能,需要笔记本对象来运行这个功能
阶段二:
  想使用一个鼠标,又有一个功能使用鼠标,并多了一个鼠标对象。
阶段三:
  还想使用一个键盘 ,又要多一个功能和一个对象
问题:每多一个功能就需要在笔记本对象中定义一个方法,不爽,程序扩展性极差。
降低鼠标、键盘等外围设备和笔记本电脑的耦合性。

3.3 实现代码

定义鼠标、键盘,笔记本三者之间应该遵守的规则

定义USB接口

public interface USB{
    //开启功能
    public void open();
    //关闭功能
    public void close();
}

实现鼠标的usb规则

public class Mouse implements USB{
    public void open(){
        System.out.println("鼠标开启");
    }
    
    public void close(){
        System.out.println("鼠标关闭");
    }
}

实现键盘的usb规则

public class KeyBoard implements USB{
    public void open(){
        System.out.println("键盘开启");
    }
    
    public void close(){
        System.out.println("键盘关闭");
    }
}

定义笔记本

public class NoteBook{
    //笔记本运行功能
    public void run(){
        System.out.println("笔记本运行");
    }
    
    //笔记本使用usb设备,这时笔记本对象调用这个功能时
    //必须传一个符合usb规则的设备
    public void useUSB(USB usb){
        usb.open();
        usb.close();
    }
    
    public void shutDown(){
        System.out.println("笔记本关闭");
    }
    
}

测试类

public class Test {
    public static void main(String[] args) {
        // 创建笔记本实体对象
        NoteBook nb = new NoteBook();
        // 笔记本开启
        nb.run();

        // 创建鼠标实体对象
        Mouse m = new Mouse();
        // 笔记本使用鼠标
        nb.useUSB(m);

        // 创建键盘实体对象
        KeyBoard kb = new KeyBoard();
        // 笔记本使用键盘
        nb.useUSB(kb);

        // 笔记本关闭
        nb.shutDown();
    }
}

运行结果


image.png

相关文章

网友评论

      本文标题:第11章 面向对象第三讲

      本文链接:https://www.haomeiwen.com/subject/nqvjpctx.html