美文网首页sympy
5.2Python数据处理篇之Sympy系列(二)---Symp

5.2Python数据处理篇之Sympy系列(二)---Symp

作者: 张一根 | 来源:发表于2019-03-15 21:28 被阅读0次

目录

[TOC]

前言

符号化运算也是数值运算中的一个主要的领域,今天我们来学习以下,python里强大的符号运算库---sympy。今天讲的是第一讲,sympy的操作。

对应于官网的:Basic Operations

Basic Operation s:

https://docs.sympy.org/latest/tutorial/basic_operations.html

(一)符号的初始化与输出设置-symbol() symbols() latex()

1.作用:

在sympy里进行符号运算之前,必须先定义sympy的符号,这样sympy才能识别该符号。

.init_printing(use_latex=True)开启时,在jupyter运行时,输出的是LaTeX的格式

使用:latex()函数,同样返回LaTeX的格式。

2.操作:

(1)说明:

符号的初始化分为两种形式:

  1. 单个符号的初始化:x = sympy.Symbol('x')
  2. 多个符号的初始化:x,y=sympy.symbols("x y")

(2)源代码:

import sympy as sy

# 符号化变量
x = sy.Symbol('x')
y, z = sy.symbols('y z')

# 输出设置
sy.init_printing(use_latex=True)

# 输出结果
print("x:", type(x))
print("y:", type(y))
print(x**2+y+z)
print(sy.latex(x**2+y+z))

(3)输出效果

01.png

(二)替换符号-subs(old,new)

1.说明:

sub是Substitution的简称,也就是替换,其有两个作用:

语法是:expr.sub(old,new)

  1. 数值替换,用数值替换符号,进行带入计算。
  2. 符号替换,用一些符号替换符号。

2.源代码:

from sympy import *

# 符号化变量
x, y, z = symbols('x y z')

expr = x**2+1

# 数值替换
result = expr.subs(x, 2)
print("原式:", expr)
print("数值计算的结果:", result)

# 符号替换
new_expr = expr.subs(x, y+z)
print("符号替换的结果:", new_expr)

3.输出效果:

02.png

4.注意点:

(1)是否改变原表达式

subs()函数不改变原表达式,并且返回一个修改的表达式。

(2)替换多个表达式

当需要替换多个表达式时,可以在subs()里使用列表

如:subs([(x,2), (y, 3), (z, 4)])

表示:将x替换成2,y替换成3,z替换成4

(三)将字符串变为sympy的表达式-sympify()

1.说明:

不要混淆了sympify()函数与 simplify()函数,前者是转化,后者是简化。

2.源代码:

from sympy import *

string = "x**2+2*y + z/2"

# 转化
expr = sympify(string)

print("类型:", type(expr))
print("表达式:", expr)

3.输出效果:

03.png

(四)数值计算-evalf()

1.说明:

相当于python自带的eval()函数,只是进行的是float浮点数运算。

2.操作:

(1)对于数值表达式的运算

直接使用.evalf()函数

from sympy import *

expr = sqrt(8)

# 进行计算
result = expr.evalf()

print(result)
04.png

(2)对于符号表达式的运算

对于表达式常用的是:

.evalf(subs={x: 2.4})

from sympy import *

# 符号化
x = Symbol('x')

# 进行计算
expr = x**2+3
result = expr.evalf(subs={x: 2})

print(result)
05.png

(五)自定义表达式-lambdify()

1.说明:

该函数有点类似于lambda(),用于自己构造一个函数表达

2.源代码:

from sympy import *
import numpy as np

x = Symbol('x')

a = np.arange(10)

expr = x**2

# 构造自己的函数
f = lambdify(x, expr, "numpy")

print(f(a))

3.输出效果:

06.png

作者:Mark

日期:2019/03/15 周五

相关文章

网友评论

    本文标题:5.2Python数据处理篇之Sympy系列(二)---Symp

    本文链接:https://www.haomeiwen.com/subject/nukdmqtx.html