MD5算法

作者: 喝豆腐脑加糖 | 来源:发表于2018-11-25 15:38 被阅读0次

    照搬加密解密

    算法的原理
    1 . 数据填充

    填充消息让长度与448 mod 512 同余。(就是填充的消息长度比512的倍数仅小于64位)即使长度满足也要填充,方法是:附一个 1 在消息后面,然后用 0 来填充,直到消息长度与448模512同余。至少填充一位,至多填充512位。

    2 . 添加长度

    再上一步结果之后附上64位的消息长度。如果填充前消息长度大于2的54次方,则只使用其低64位,添加填充位和消息长度之后,最终消息长度正好是512的整数倍。

    3 .初始化变量

    用4个变量(A,B,C,D)来计算消息摘要,这里的A,B,C,D都是32位寄存器。这些寄存器按下面十六进制来初始化:
    A=01234567h
    B=89abcdefh
    C=fedcba98h
    D=76543210h

    且在内存中以低字节在前的形式储存:

    01 23 45 67 89 AB CD EF FE DC BA 98 76 54 32 10

    4.数据处理

    以512位分组位单位处理消息。首先定义4个辅助函数,每个都是以3个32位双字节作为输入,输出1个32位双字。

                             F(X,Y,Z) = (X&Y)|((~X)&Z)
                             G(X,Y,Z) = (X&Z)|(Y&(~Z))
                             H(X,Y,Z) = X^Y^Z
                             I (X,Y,Z)  = Y^(X|(~Z))
    

    这四轮是对进入主循环的512位消息分组的16个32位字分别进行以下操作:将A,B,C,D的副本a,b,c,d中的3个经F,G,H,I 运算后的结果与第4个相加,再加上32位字和一个32位字的加法常数,并将所得的值循环左移若干位,最后将所得结果加上a,b,c,d之一,并回送至A,B,C,D,由此完成一次循环。

    所用的加法常数由表T[i]来定义,其中 i 为 1 到 64 中的值。T[i] 等于4294967296乘以abs(sin(i))所得结果的整数部分,其中 i 用弧度表示。这样做是为了通过正弦函数和幂函数来进行进一步消除变换中的线性。

    #define S11 7
    #define S12 12
    #define S13 17
    #define S14 22
    #define S21 5
    #define S22 9
    #define S23 14
    #define S24 20
    #define S31 4
    #define S32 11
    #define S33 16
    #define S34 23
    #define S41 6
    #define S42 10
    #define S43 15
    #define S44 21
    
    static void MD5Transform PROTO_LIST ((UINT4 [4], unsigned char [64]));
    static void Encode PROTO_LIST
    ((unsigned char *, UINT4 *, unsigned int));
    static void Decode PROTO_LIST
    ((UINT4 *, unsigned char *, unsigned int));
    static void MD5_memcpy PROTO_LIST ((POINTER, POINTER, unsigned int));
    static void MD5_memset PROTO_LIST ((POINTER, int, unsigned int));
    
    static unsigned char PADDING[64] = {
    0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
    };
    
    /* F, G, H and I are basic MD5 functions.
    */
    #define F(x, y, z) (((x) & (y)) | ((~x) & (z)))
    #define G(x, y, z) (((x) & (z)) | ((y) & (~z)))
    #define H(x, y, z) ((x) ^ (y) ^ (z))
    #define I(x, y, z) ((y) ^ ((x) | (~z)))
    
    /* ROTATE_LEFT rotates x left n bits.
    */
    #define ROTATE_LEFT(x, n) (((x) << (n)) | ((x) >> (32-(n))))
    
    /* FF, GG, HH, and II transformations for rounds 1, 2, 3, and 4.
    Rotation is separate from addition to prevent recomputation.
    */
    #define FF(a, b, c, d, x, s, ac) { \
    (a) += F ((b), (c), (d)) + (x) + (UINT4)(ac); \
    (a) = ROTATE_LEFT ((a), (s)); \
    (a) += (b); \
    }
    #define GG(a, b, c, d, x, s, ac) { \
    (a) += G ((b), (c), (d)) + (x) + (UINT4)(ac); \
    (a) = ROTATE_LEFT ((a), (s)); \
    (a) += (b); \
    }
    #define HH(a, b, c, d, x, s, ac) { \
    (a) += H ((b), (c), (d)) + (x) + (UINT4)(ac); \
    (a) = ROTATE_LEFT ((a), (s)); \
    (a) += (b); \
    }
    #define II(a, b, c, d, x, s, ac) { \
    (a) += I ((b), (c), (d)) + (x) + (UINT4)(ac); \
    (a) = ROTATE_LEFT ((a), (s)); \
    (a) += (b); \
    }
    
    /* MD5 initialization. Begins an MD5 operation, writing a new context.
    */
    void MD5Init (context)
    MD5_CTX *context;                                        /* context */
    {
    context->count[0] = context->count[1] = 0;
    /* Load magic initialization constants.
    */
    context->state[0] = 0x67452301;
    context->state[1] = 0xefcdab89;
    context->state[2] = 0x98badcfe;
    context->state[3] = 0x10325476;
    }
    
    /* MD5 block update operation. Continues an MD5 message-digest
    operation, processing another message block, and updating the
    context.
    */
    void MD5Update (context, input, inputLen)
    MD5_CTX *context;                                        /* context */
    unsigned char *input;                                /* input block */
    unsigned int inputLen;                     /* length of input block */
    {
    unsigned int i, index, partLen;
    
    /* Compute number of bytes mod 64 */
    index = (unsigned int)((context->count[0] >> 3) & 0x3F);
    
    /* Update number of bits */
    if ((context->count[0] += ((UINT4)inputLen << 3))
    < ((UINT4)inputLen << 3))
    context->count[1]++;
    context->count[1] += ((UINT4)inputLen >> 29);
    
    partLen = 64 - index;
    
    /* Transform as many times as possible.
    */
    if (inputLen >= partLen) {
    MD5_memcpy
    ((POINTER)&context->buffer[index], (POINTER)input, partLen);
    MD5Transform (context->state, context->buffer);
    
    for (i = partLen; i + 63 < inputLen; i += 64)
    MD5Transform (context->state, &input[i]);
    
    index = 0;
    }
    else
    i = 0;
    
    /* Buffer remaining input */
    MD5_memcpy
    ((POINTER)&context->buffer[index], (POINTER)&input[i],
    inputLen-i);
    }
    
    /* MD5 finalization. Ends an MD5 message-digest operation, writing the
    the message digest and zeroizing the context.
    */
    void MD5Final (digest, context)
    unsigned char digest[16];                         /* message digest */
    MD5_CTX *context;                                       /* context */
    {
    unsigned char bits[8];
    unsigned int index, padLen;
    
    /* Save number of bits */
    Encode (bits, context->count, 8);
    
    /* Pad out to 56 mod 64.
    */
    index = (unsigned int)((context->count[0] >> 3) & 0x3f);
    padLen = (index < 56) ? (56 - index) : (120 - index);
    MD5Update (context, PADDING, padLen);
    
    /* Append length (before padding) */
    MD5Update (context, bits, 8);
    
    /* Store state in digest */
    Encode (digest, context->state, 16);
    
    /* Zeroize sensitive information.
    */
    MD5_memset ((POINTER)context, 0, sizeof (*context));
    }
    
    /* MD5 basic transformation. Transforms state based on block.
    */
    static void MD5Transform (state, block)
    UINT4 state[4];
    unsigned char block[64];
    {
    UINT4 a = state[0], b = state[1], c = state[2], d = state[3], x[16];
    
    Decode (x, block, 64);
    
    /* Round 1 */
    FF (a, b, c, d, x[ 0], S11, 0xd76aa478); /* 1 */
    FF (d, a, b, c, x[ 1], S12, 0xe8c7b756); /* 2 */
    FF (c, d, a, b, x[ 2], S13, 0x242070db); /* 3 */
    FF (b, c, d, a, x[ 3], S14, 0xc1bdceee); /* 4 */
    FF (a, b, c, d, x[ 4], S11, 0xf57c0faf); /* 5 */
    FF (d, a, b, c, x[ 5], S12, 0x4787c62a); /* 6 */
    FF (c, d, a, b, x[ 6], S13, 0xa8304613); /* 7 */
    FF (b, c, d, a, x[ 7], S14, 0xfd469501); /* 8 */
    FF (a, b, c, d, x[ 8], S11, 0x698098d8); /* 9 */
    FF (d, a, b, c, x[ 9], S12, 0x8b44f7af); /* 10 */
    FF (c, d, a, b, x[10], S13, 0xffff5bb1); /* 11 */
    FF (b, c, d, a, x[11], S14, 0x895cd7be); /* 12 */
    FF (a, b, c, d, x[12], S11, 0x6b901122); /* 13 */
    FF (d, a, b, c, x[13], S12, 0xfd987193); /* 14 */
    FF (c, d, a, b, x[14], S13, 0xa679438e); /* 15 */
    FF (b, c, d, a, x[15], S14, 0x49b40821); /* 16 */
    
    /* Round 2 */
    GG (a, b, c, d, x[ 1], S21, 0xf61e2562); /* 17 */
    GG (d, a, b, c, x[ 6], S22, 0xc040b340); /* 18 */
    GG (c, d, a, b, x[11], S23, 0x265e5a51); /* 19 */
    GG (b, c, d, a, x[ 0], S24, 0xe9b6c7aa); /* 20 */
    GG (a, b, c, d, x[ 5], S21, 0xd62f105d); /* 21 */
    GG (d, a, b, c, x[10], S22,  0x2441453); /* 22 */
    GG (c, d, a, b, x[15], S23, 0xd8a1e681); /* 23 */
    GG (b, c, d, a, x[ 4], S24, 0xe7d3fbc8); /* 24 */
    GG (a, b, c, d, x[ 9], S21, 0x21e1cde6); /* 25 */
    GG (d, a, b, c, x[14], S22, 0xc33707d6); /* 26 */
    GG (c, d, a, b, x[ 3], S23, 0xf4d50d87); /* 27 */
    GG (b, c, d, a, x[ 8], S24, 0x455a14ed); /* 28 */
    GG (a, b, c, d, x[13], S21, 0xa9e3e905); /* 29 */
    GG (d, a, b, c, x[ 2], S22, 0xfcefa3f8); /* 30 */
    GG (c, d, a, b, x[ 7], S23, 0x676f02d9); /* 31 */
    GG (b, c, d, a, x[12], S24, 0x8d2a4c8a); /* 32 */
    
    /* Round 3 */
    HH (a, b, c, d, x[ 5], S31, 0xfffa3942); /* 33 */
    HH (d, a, b, c, x[ 8], S32, 0x8771f681); /* 34 */
    HH (c, d, a, b, x[11], S33, 0x6d9d6122); /* 35 */
    HH (b, c, d, a, x[14], S34, 0xfde5380c); /* 36 */
    HH (a, b, c, d, x[ 1], S31, 0xa4beea44); /* 37 */
    HH (d, a, b, c, x[ 4], S32, 0x4bdecfa9); /* 38 */
    HH (c, d, a, b, x[ 7], S33, 0xf6bb4b60); /* 39 */
    HH (b, c, d, a, x[10], S34, 0xbebfbc70); /* 40 */
    HH (a, b, c, d, x[13], S31, 0x289b7ec6); /* 41 */
    HH (d, a, b, c, x[ 0], S32, 0xeaa127fa); /* 42 */
    HH (c, d, a, b, x[ 3], S33, 0xd4ef3085); /* 43 */
    HH (b, c, d, a, x[ 6], S34,  0x4881d05); /* 44 */
    HH (a, b, c, d, x[ 9], S31, 0xd9d4d039); /* 45 */
    HH (d, a, b, c, x[12], S32, 0xe6db99e5); /* 46 */
    HH (c, d, a, b, x[15], S33, 0x1fa27cf8); /* 47 */
    HH (b, c, d, a, x[ 2], S34, 0xc4ac5665); /* 48 */
    
    /* Round 4 */
    II (a, b, c, d, x[ 0], S41, 0xf4292244); /* 49 */
    II (d, a, b, c, x[ 7], S42, 0x432aff97); /* 50 */
    II (c, d, a, b, x[14], S43, 0xab9423a7); /* 51 */
    II (b, c, d, a, x[ 5], S44, 0xfc93a039); /* 52 */
    II (a, b, c, d, x[12], S41, 0x655b59c3); /* 53 */
    II (d, a, b, c, x[ 3], S42, 0x8f0ccc92); /* 54 */
    II (c, d, a, b, x[10], S43, 0xffeff47d); /* 55 */
    II (b, c, d, a, x[ 1], S44, 0x85845dd1); /* 56 */
    II (a, b, c, d, x[ 8], S41, 0x6fa87e4f); /* 57 */
    II (d, a, b, c, x[15], S42, 0xfe2ce6e0); /* 58 */
    II (c, d, a, b, x[ 6], S43, 0xa3014314); /* 59 */
    II (b, c, d, a, x[13], S44, 0x4e0811a1); /* 60 */
    II (a, b, c, d, x[ 4], S41, 0xf7537e82); /* 61 */
    II (d, a, b, c, x[11], S42, 0xbd3af235); /* 62 */
    II (c, d, a, b, x[ 2], S43, 0x2ad7d2bb); /* 63 */
    II (b, c, d, a, x[ 9], S44, 0xeb86d391); /* 64 */
    
    state[0] += a;
    state[1] += b;
    state[2] += c;
    state[3] += d;
    
    /* Zeroize sensitive information.
    */
    MD5_memset ((POINTER)x, 0, sizeof (x));
    }
    
    /* Encodes input (UINT4) into output (unsigned char). Assumes len is
    a multiple of 4.
    */
    static void Encode (output, input, len)
    unsigned char *output;
    UINT4 *input;
    unsigned int len;
    {
    unsigned int i, j;
    
    for (i = 0, j = 0; j < len; i++, j += 4) {
    output[j] = (unsigned char)(input[i] & 0xff);
    output[j+1] = (unsigned char)((input[i] >> 8) & 0xff);
    output[j+2] = (unsigned char)((input[i] >> 16) & 0xff);
    output[j+3] = (unsigned char)((input[i] >> 24) & 0xff);
    }
    }
    
    /* Decodes input (unsigned char) into output (UINT4). Assumes len is
    a multiple of 4.
    */
    static void Decode (output, input, len)
    UINT4 *output;
    unsigned char *input;
    unsigned int len;
    {
    unsigned int i, j;
    
    for (i = 0, j = 0; j < len; i++, j += 4)
    output[i] = ((UINT4)input[j]) | (((UINT4)input[j+1]) << 8) |
    (((UINT4)input[j+2]) << 16) | (((UINT4)input[j+3]) << 24);
    }
    
    /* Note: Replace "for loop" with standard memcpy if possible.
    */
    
    static void MD5_memcpy (output, input, len)
    POINTER output;
    POINTER input;
    unsigned int len;
    {
    unsigned int i;
    
    for (i = 0; i < len; i++)
     output[i] = input[i];
    }
    
    /* Note: Replace "for loop" with standard memset if possible.
    */
    static void MD5_memset (output, value, len)
    POINTER output;
    int value;
    unsigned int len;
    {
    unsigned int i;
    
    for (i = 0; i < len; i++)
    ((char *)output)[i] = (char)value;
    }               
    

    全部照搬加密与解密 , 按照这些把加密算法熟悉一下。

    相关文章

      网友评论

          本文标题:MD5算法

          本文链接:https://www.haomeiwen.com/subject/nvjpqqtx.html