美文网首页ml_nlp深度学习锦集
NLP应用一:卷积网络有监督文本分类(论文+code)

NLP应用一:卷积网络有监督文本分类(论文+code)

作者: 灿烂的GL | 来源:发表于2019-02-25 16:57 被阅读0次

    一、卷积网络在NLP上的运用简析

    1、输入:句子或文档

    类似于图片处理需要将图片转化成矩阵形式,矩阵中的向量代表的是像素点,同样应用到文本上是每行为单词向量[5],通常得到这种向量的处理方式是WordEmbeding(低维表示,不懂参考解释),常用的方法有:word2vec或者GloVe也可以是Onehot形式形成单词索引。

    2、算法模型:卷积网络

    区别于图像处理,卷积网络通过窗口在局部区域滑动获取卷积运算后的值,对于文本中窗口大小的选择,其宽度通常与输入矩阵宽度相同,高度或区域大小可能不同,但一次滑动窗口通常设置超过2-5个单词。还需要注意的是,对于图像来说通道设置为RGB,文本来说具体的通道需要根据实际方法而定


    二、论文实例(Convolutional Neural Networks for Sentence Classification)

    代码链接
    文章链接
    特点:词向量和深度学习结合实现文本分类
    这里这要借鉴实现原理及代码

    卷积处理过程
    1.输入:为词向量从上到下排序的矩阵(width-最长句子词向量长,height-embeding设置值)。
    矩阵的类型有静态(static)和非静态(non-static)方式。static方式采用比如word2vec预训练的词向量,训练过程不更新词向量,实质上属于迁移学习了,特别是数据量比较小的情况下,采用静态的词向量往往效果不错。non-static则是在训练过程中更新词向量。推荐的方式是 non-static 中的 fine-tunning方式,它是以预训练(pre-train)的word2vec向量初始化词向量,训练过程中调整词向量,能加速收敛,当然如果有充足的训练数据和资源,直接随机初始化词向量效果也是可以的。
    处理方式:CNN处理图片的方式是左右滑动窗口,处理文本是上下,类似于N-Gream的方式,这里的N即embeding值,比如:每两行卷积一次就是2-gream。
    2.卷积网络参数:从n-gream的角度看,n的取值范围通常取2,3,4,这里卷积核的大小取的是(2,3,4)数量分别为100,100,100,总共为300个卷积核
    3.输出:情绪分类结果,这里作者用的数据集中有两种情绪(积极、消极,即二分类) 文本处理过程示意图

    三、code分析
    1、数据处理
    输入数据为rt-polarity.neg和rt-polarity.pos,包含摘自影评得到英文评论。
    主要模块如下:

    def load_data_and_labels(positive_data_file, negative_data_file):
        """
        Loads MR polarity data from files, splits the data into words and generates labels.
        Returns split sentences and labels.
        加载数据文件,生成对应标签,清洗数据,合并分别生成数据文件和标签文件
        """
        # Load data from files
        positive_examples = list(open(positive_data_file, "r", encoding='utf-8').readlines())
        # delete blank mark('\n','\r','\t',''),s.strip(something)
        positive_examples = [s.strip() for s in positive_examples]
        negative_examples = list(open(negative_data_file, "r", encoding='utf-8').readlines())
        negative_examples = [s.strip() for s in negative_examples]
        # Split by words
        x_text = positive_examples + negative_examples
        # merge to one text
        x_text = [clean_str(sent) for sent in x_text]
        # Generate labels,second classification
        positive_labels = [[0, 1] for _ in positive_examples]
        negative_labels = [[1, 0] for _ in negative_examples]
        # merge to one label text
        y = np.concatenate([positive_labels, negative_labels], 0)
        return [x_text, y]
    

    清洗数据过程如下:

    def clean_str(string):
        """
        Tokenization/string cleaning for all datasets except for SST.
        Original taken from https://github.com/yoonkim/CNN_sentence/blob/master/process_data.py
        """
        #sub正则替换函数,除A-Za-z0-9(),!?'`外的字符,去除
        string = re.sub(r"[^A-Za-z0-9(),!?\'\`]", " ", string)
        #\'s替换成 \'s(加空格)
        string = re.sub(r"\'s", " \'s", string)
        string = re.sub(r"\'ve", " \'ve", string)
        string = re.sub(r"n\'t", " n\'t", string)
        string = re.sub(r"\'re", " \'re", string)
        string = re.sub(r"\'d", " \'d", string)
        string = re.sub(r"\'ll", " \'ll", string)
        string = re.sub(r",", " , ", string)
        string = re.sub(r"!", " ! ", string)
        string = re.sub(r"\(", " \( ", string)
        string = re.sub(r"\)", " \) ", string)
        string = re.sub(r"\?", " \? ", string)
        #两个以上连续的空白符,删除
        string = re.sub(r"\s{2,}", " ", string)
        return string.strip().lower()
    

    python的re模块(正则表达式)详解
    2、网络模型
    嵌入层、卷积层、池化层、Dropout层、预测层
    1.初始化参数

    sequence_length, num_classes, vocab_size,embedding_size, filter_sizes, num_filters, l2_reg_lambda=0.0
    

    2.封装的embedding层
    它将词汇词索引映射到低维向量表示中。 它本质上是一个从数据中学习的查找表。

     #封装embedding层
            with tf.device('/cpu:0'), tf.name_scope("embedding"):
                self.W = tf.Variable(
                    #self.W可以理解为词向量词典,vocab_size为max_document_length,随机初始化为(-1,1)
                    tf.random_uniform([vocab_size, embedding_size], -1.0, 1.0),
                    name="W")
                #params中查找与ids对应的表示。W中查找self.input_x对应的表示
                self.embedded_chars = tf.nn.embedding_lookup(self.W, self.input_x)
                #self.embedded_chars_expanded:将词向量表示扩充一个维度(embedded_chars * 1)
                #维度变为[句子数量, sequence_length, embedding_size, 1]
                self.embedded_chars_expanded = tf.expand_dims(self.embedded_chars, -1)
    

    3.卷积层和池化层

            for i, filter_size in enumerate(filter_sizes):
                with tf.name_scope("conv-maxpool-%s" % filter_size):
                    # Convolution Layer
                    filter_shape = [filter_size, embedding_size, 1, num_filters]
                    W = tf.Variable(tf.truncated_normal(filter_shape, stddev=0.1), name="W")
                    b = tf.Variable(tf.constant(0.1, shape=[num_filters]), name="b")
                    conv = tf.nn.conv2d(
                        self.embedded_chars_expanded,
                        W,
                        strides=[1, 1, 1, 1],
                        padding="VALID",
                        name="conv")
                    # Apply nonlinearity
                    h = tf.nn.relu(tf.nn.bias_add(conv, b), name="relu")
     pooled = tf.nn.max_pool(
                        h,
                        ksize=[1, sequence_length - filter_size + 1, 1, 1],
                        strides=[1, 1, 1, 1],
                        padding='VALID',
                        name="pool")
                    pooled_outputs.append(pooled)
            # Combine all the pooled features,get from three filters
            num_filters_total = num_filters * len(filter_sizes)
            self.h_pool = tf.concat(pooled_outputs, 3)
            self.h_pool_flat = tf.reshape(self.h_pool, [-1, num_filters_total])
    

    这里需要注意多个filter的迭代写法,同样看出TensorFlow的灵活性。其中h是将非线性应用于卷积输出的结果。 每个过滤器在整个嵌入中滑过,但是它涵盖的字数有所不同。 “VALID”填充意味着我们将过滤器滑过我们的句子而不填充边缘,执行一个窄的卷积,给出一个形状[1,sequence_length - filter_size + 1,1,1]的输出。 在特定过滤器大小的输出上执行最大化池将留下一张张量[batch_size,1,num_filters]。 这本质上是一个特征向量,其中最后一个维度对应于我们的特征。 一旦我们从每个过滤器大小得到所有的汇集输出张量,我们将它们组合成一个长形特征向量[batch_size,num_filters_total]。 在tf.reshape中使用-1可以告诉TensorFlow在可能的情况下平坦化维度。
    4.Dropout层及预测

            # Add dropout
            with tf.name_scope("dropout"):
                self.h_drop = tf.nn.dropout(self.h_pool_flat, self.dropout_keep_prob)
    
            # Final (unnormalized) scores and predictions
            with tf.name_scope("output"):
                W = tf.get_variable(
                    "W",
                    shape=[num_filters_total, num_classes],
     initializer=tf.contrib.layers.xavier_initializer())
                b = tf.Variable(tf.constant(0.1, shape=[num_classes]), name="b")
                l2_loss += tf.nn.l2_loss(W)
                l2_loss += tf.nn.l2_loss(b)
                self.scores = tf.nn.xw_plus_b(self.h_drop, W, b, name="scores")
                self.predictions = tf.argmax(self.scores, 1, name="predictions")
    

    使用max-pooling(with dropout )的特征向量,我们可以通过执行矩阵乘法并选择具有最高分数的类来生成预测。 也可以应用softmax函数将原始分数转换为归一化概率。这里,tf.nn.xw_plus_b是执行Wx + b矩阵乘法。
    2、训练文件
    1.固定参数设置

    # Parameters
    ====================================
    # Data loading params
    #10% of database is used to do verification 
    tf.flags.DEFINE_float("dev_sample_percentage", .1, "Percentage of the training data to use for validation")
    tf.flags.DEFINE_string("positive_data_file", "./data/rt-polaritydata/rt-polarity.pos", "Data source for the positive data.")
    tf.flags.DEFINE_string("negative_data_file", "./data/rt-polaritydata/rt-polarity.neg", "Data source for the negative data.")
    
    # Model Hyperparameters
    tf.flags.DEFINE_integer("embedding_dim", 128, "Dimensionality of character embedding (default: 128)")
    tf.flags.DEFINE_string("filter_sizes", "3,4,5", "Comma-separated filter sizes (default: '3,4,5')")
    tf.flags.DEFINE_integer("num_filters", 128, "Number of filters per filter size (default: 128)")
    tf.flags.DEFINE_float("dropout_keep_prob", 0.5, "Dropout keep probability (default: 0.5)")
    tf.flags.DEFINE_float("l2_reg_lambda", 0.0, "L2 regularization lambda (default: 0.0)")
    
    # Training parameters
    tf.flags.DEFINE_integer("batch_size", 64, "Batch Size (default: 64)")
    tf.flags.DEFINE_integer("num_epochs", 200, "Number of training epochs (default: 200)")
    tf.flags.DEFINE_integer("evaluate_every", 100, "Evaluate model on dev set after this many steps (default: 100)")
    tf.flags.DEFINE_integer("checkpoint_every", 100, "Save model after this many steps (default: 100)")
    tf.flags.DEFINE_integer("num_checkpoints", 5, "Number of checkpoints to store (default: 5)")
    # Misc Parameters
    tf.flags.DEFINE_boolean("allow_soft_placement", True, "Allow device soft device placement")
    tf.flags.DEFINE_boolean("log_device_placement", False, "Log placement of ops on devices")
    
    FLAGS = tf.flags.FLAGS
    

    flag函数定义传参的方式值得借鉴
    2.训练数据测试数据处理过程

    def preprocess():
        # Data Preparation
        # ==================================================
    
        # Load data
        print("Loading data...")
        x_text, y = data_helpers.load_data_and_labels(FLAGS.positive_data_file, FLAGS.negative_data_file)
    
        # Build vocabulary
        max_document_length = max([len(x.split(" ")) for x in x_text])
        vocab_processor = learn.preprocessing.VocabularyProcessor(max_document_length)
        x = np.array(list(vocab_processor.fit_transform(x_text)))
    
        # Randomly shuffle data
        np.random.seed(10)
        shuffle_indices = np.random.permutation(np.arange(len(y)))
        x_shuffled = x[shuffle_indices]
        y_shuffled = y[shuffle_indices]
    
        # Split train/test set
        # TODO: This is very crude, should use cross-validation
        dev_sample_index = -1 * int(FLAGS.dev_sample_percentage * float(len(y)))
        x_train, x_dev = x_shuffled[:dev_sample_index], x_shuffled[dev_sample_index:]
        y_train, y_dev = y_shuffled[:dev_sample_index], y_shuffled[dev_sample_index:]
    
        del x, y, x_shuffled, y_shuffled
    
        print("Vocabulary Size: {:d}".format(len(vocab_processor.vocabulary_)))
        print("Train/Dev split: {:d}/{:d}".format(len(y_train), len(y_dev)))
        return x_train, y_train, vocab_processor, x_dev, y_dev
    

    这里训练集和数据集的比例是9:1,此外对于数据集小的可以采用K折交叉验证(参看sklearn函数
    tensorflow的训练结构是常见形式,作者还加了summary模块,用于tensorboard进行可视化显示

    grad_summaries = []
                for g, v in grads_and_vars:
                    if g is not None:
                        grad_hist_summary = tf.summary.histogram("{}/grad/hist".format(v.name), g)
                        sparsity_summary = tf.summary.scalar("{}/grad/sparsity".format(v.name), tf.nn.zero_fraction(g))
                        grad_summaries.append(grad_hist_summary)
                        grad_summaries.append(sparsity_summary)
                grad_summaries_merged = tf.summary.merge(grad_summaries)
    
                # Output directory for models and summaries
                timestamp = str(int(time.time()))
                out_dir = os.path.abspath(os.path.join(os.path.curdir, "runs", timestamp))
                print("Writing to {}\n".format(out_dir))
    
                # Summaries for loss and accuracy
                loss_summary = tf.summary.scalar("loss", cnn.loss)
                acc_summary = tf.summary.scalar("accuracy", cnn.accuracy)
    
                # Train Summaries
                train_summary_op = tf.summary.merge([loss_summary, acc_summary, grad_summaries_merged])
                train_summary_dir = os.path.join(out_dir, "summaries", "train")
                train_summary_writer = tf.summary.FileWriter(train_summary_dir, sess.graph)
    
                # Dev summaries
                dev_summary_op = tf.summary.merge([loss_summary, acc_summary])
                dev_summary_dir = os.path.join(out_dir, "summaries", "dev")
                dev_summary_writer = tf.summary.FileWriter(dev_summary_dir, sess.graph)
    

    将最终训练好的模型存成.ckpt文件
    3、测试文件
    word2vec 词袋化,这块不是很懂,以后遇见再补。

    # Map data into vocabulary
    # 词向量存放路径并取出,词向量就是打开模型这台车的钥匙
    vocab_path = os.path.join(FLAGS.checkpoint_dir, "..", "vocab")
    vocab_processor = learn.preprocessing.VocabularyProcessor.restore(vocab_path)
    # 测试语料,写入一个array,依次串行写入
    x_test = np.array(list(vocab_processor.transform(x_raw)))
    

    参考链接:
    [1] 作者解读
    [2] 其他解读
    [3] 卷积神经网络CNN在自然语言处理中的应用
    [4] N-Gram模型详解
    [5] 词向量及Word2vec的理解
    [6] code分析参考

    相关文章

      网友评论

        本文标题:NLP应用一:卷积网络有监督文本分类(论文+code)

        本文链接:https://www.haomeiwen.com/subject/nvkbyqtx.html