from sklearn.metrics import accuracy_score
help(accuracy_score)
Help on function accuracy_score in module sklearn.metrics.classification:
accuracy_score(y_true, y_pred, normalize=True, sample_weight=None)
Accuracy classification score.
In multilabel classification, this function computes subset accuracy:
the set of labels predicted for a sample must *exactly* match the
corresponding set of labels in y_true.
Read more in the :ref:`User Guide <accuracy_score>`.
Parameters
----------
y_true : 1d array-like, or label indicator array / sparse matrix
Ground truth (correct) labels.
y_pred : 1d array-like, or label indicator array / sparse matrix
Predicted labels, as returned by a classifier.
normalize : bool, optional (default=True)
If ``False``, return the number of correctly classified samples.
Otherwise, return the fraction of correctly classified samples.
ormalize:bool,可选(默认值=True),如果是`False‘,则返回正确分类的样本数。否则,返回正确分类样本的分数。
sample_weight : array-like of shape = [n_samples], optional
Sample weights.
Returns
-------
score : float
If ``normalize == True``, return the fraction of correctly
classified samples (float), else returns the number of correctly
classified samples (int).
The best performance is 1 with ``normalize == True`` and the number
of samples with ``normalize == False``.
See also
--------
jaccard_score, hamming_loss, zero_one_loss
Notes
-----
In binary and multiclass classification, this function is equal
to the ``jaccard_score`` function.
Examples
--------
from sklearn.metrics import accuracy_score
y_pred = [0, 2, 1, 3]
y_true = [0, 1, 2, 3]
accuracy_score(y_true, y_pred)
0.5
accuracy_score(y_true, y_pred, normalize=False)
2
In the multilabel case with binary label indicators:
import numpy as np
accuracy_score(np.array([[0, 1], [1, 1]]), np.ones((2, 2)))
0.5
网友评论