美文网首页map相关
HashMap小探(三)之红黑树

HashMap小探(三)之红黑树

作者: AlanKim | 来源:发表于2019-01-12 21:34 被阅读13次

HashMap中的红黑树

红黑树

平衡二叉查找树

红黑树是一种平衡二叉查找树(Binary Search Tree)的实现,先看看二叉查找树的概念如下:

  1. 为空树,或者具有以下特性的二叉树
  2. 左子树上的所有节点,若不为空,则全都小于根节点
  3. 右子树上的所有节点,若不为空,则全都大于根节点
  4. 任意节点的左右子树,也都是二叉查找树
  5. 不存在key、value都相等的节点

不过二叉查找树存在一个问题。正常情况下,二叉查找树的查找性能为O(logN),不过在极端情况下,比如按照顺序从小到大 或者从大到小,选中的根节点为最小或最大值,那么二叉查找树就变成了一个链表,查找性能变成了O(N)。而加上了一个平衡,也就解决了这个问题,平衡树(即AVL树,Adelson-Velskii 和 Laandis),在每插入一个节点的时候,必须保证每个节点对应的左子树和右子树的树高度差不超过1。如果超过,就需要平衡,也就是左旋、右旋、左右旋结合(先左再右,先右再左)

总结下:二叉查找树的值,从小到大的顺序分别是:左 < 根 < 右,任意子树都满足这个大小关系,不过存在极端情况下性能变成O(N)的问题,平衡树则解决了这个问题。

注意:这里说的值,是指key的值,而不是Value。简化点,是根据key来构成的节点

红黑树定义

红黑树在平衡二叉查找树的基础上,增加了着色和一些规定。增加的规定如下:

  1. 根节点是黑的
  2. 下面的子节点可以为红,也可以为黑
  3. 叶子节点,即所有null节点,都是黑的
  4. 如果一个节点是红的,那么他的两个子节点都是黑的
  5. 对于任一节点来说,它到叶子null节点的所有路径,含有相同数目的黑色节点

如下图所示,就是一个典型的红黑树结构(引用自https://github.com/julycoding/The-Art-Of-Programming-By-July/blob/master/ebook/zh/03.01.md):

1.png

第五点比较有意思,可以对照图做理解。

AVL树的旋转

当往平衡树中添加、删除节点时,可能导致树的左右子树不平衡,所以就有了树的旋转。

树的旋转分为左旋和右旋,下面分别开始学习:

左旋

顾名思义,向左旋转,不过这里指的是根节点变成了左子树根节点。

具体下来,就是右子树以根节点为中心,逆时针旋转, 如下所示,右节点C变成了根节点,原来的根节点A变成了左子树的子根节点。


Snip20180627_13.png

说明:

  1. 左侧是一颗红黑树,现在需要做 左转 操作
  2. 根据左转负责,A的右子树需要逆时针旋转,所以是以C为根节点的子树,逆时针上移
  3. 关于key大小的关系,存在以下不等式: B < A < E < C < F,所以C变成了根节点,A为左子树根节点,则B和E分别变成了A的左、右子节点,F变成C的右子节点
  4. 根据红黑树的节点颜色规定,需要将各个节点的颜色进行从新着色。

先看下普通的左旋实现,关于着色的。。。后续再说。主要思路就是上面的2、3两个步骤:

treeMap中的左旋实现,p是当前根节点(或子树根节点)

void rotateLeft(Entry<K,V> p){ // p是当前需要旋转的树根节点
    if(null != p){
        // 1 先拿到右子树(上图中C)
        Entry<K,V> r = p.right;
        
        // 2 把C的左子树E 变成 节点p的右子树,因为EValue肯定大于pValue,注意是双向关系指向
        p.right = r.left;   // 2.1 父-->子
        if(null != r.left){
            r.left.parent = p;  // 2.2 子-->父
        }  
        // 3 把r变成根节点
        r.parent = p.parent; // 3.1 子-->父
        // 3.2 以下都是父到子的关系设定
        if(p.parent = null){  // 3.2.1 如果p已经是根节点了,那么现在r就是根节点
            root = r;
        }
        // 3.2.2 如果p是之前父节点的左子树,设置左子树为r
        else if (p.parent.left == p){
            p.parent.left = r;
        }
        // 3.2.3 如果p是之前父节点的右子树,设置右子树为r
        else{
            p.parent.right = r;
        }
      
        // 4 p和r的位置设置,p变成r的左子树
        r.left = p; // 3.1.1 父 -> 子
        p.parent = r; // 3.1.2 子 --> 父
    }
}
右旋

说完左旋,下面说到右旋。右旋是指根节点变成右移,变成右子树根节点。

右旋是指树的左子树,以根节点为中心顺时针旋转。

Snip20180629_17.png

说明:

  1. 左侧是原始树,需要做右旋转。
  2. 右旋转是左子树B,以根节点A为轴,顺时针旋转,并取代A的根节点位置。
  3. 值的大小关系,是D < B < E < A < C,所以如果B变成了根节点,那么左子树只有一个D节点。其他节点都在右子树上;其中A需要为右子树的子根节点
  4. 右旋转完成后,需要重新着色。

简单起见,先以普通二叉树的右旋转代码实现为例:

void rotateRight(Entry<K,V> p){  // p是当前需要右旋转的树/子树根节点
    if(null != p){
        // 1 先拿到左子树根节点
        Entry<K,V> l = p.left;
        
        // 2 把l节点的右子节点(上图中E),变成p(上图中A)的左节点,注意是双向节点:
        p.left = l.right; // 2.1,父-->子,也就是做父节点指向子节点的指针赋值
        if(null != l.right){ 
            l.right.parent = p;  // 2.2 子-->父,做子节点指向父节点的指针赋值。这里做个非Null判断,防止空指针
        }
        
        // 3 把l节点 跟 p的父节点 关联起来
        l.parent = p.parent;  // 3.1 子 --> 父,设定l的父节点为 p的父节点
        // 3.2 父 --> 子,多种情况
        if(null = p.parent){ // 3.2.1 p本身就是根节点,那么现在根节点变成l
            root = l;
        }
        // 3.2.2 如果p是左子树
        else if(p = p.parent.left){
            p.parent.left = l;
        }
        // 3.2.3 如果p是右子树
        else{
            p.parent.right = l;
        }
        
        // 4 p和l的关系转换
        p.parent = l;
        l.right = p;
    }
}

右旋的实现,基本上思路与左旋实现一致,只不过刚好倒过来。

总结下:

左旋 = 右子树 + 逆时针,本质上是右子树向右,原根节点变成新根节点的左子树根节点,所以叫左旋

右旋 = 左子树 + 顺时针,本质上是左子树向左,原根节点变成新根节点的右子树根节点,所以叫右旋

旋转之后,需要根据key的大小关系重新组织数节点,这里赋值的时候,需要注意是双向赋值:

  1. 子节点需要将parent字段指向父节点
  2. 父节点需要根据情况,确定子节点是在左子树还是右子树上。
红黑树的旋转

在二叉树节点插入的基础上,红黑树需要加入平衡、着色处理。由于只有两种颜色,即红色和黑色,那么可以用boolean类型来表示颜色。具体实现详见下一章节。

红黑树的实现

hashmap源码中包含了红黑树的构造和实现,先贴下源码

    /* ------------------------------------------------------------ */
    // Tree bins

    /**
     * Entry for Tree bins. Extends LinkedHashMap.Entry (which in turn
     * extends Node) so can be used as extension of either regular or
     * linked node.
     */
    static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
        TreeNode<K,V> parent;  // red-black tree links
        TreeNode<K,V> left;
        TreeNode<K,V> right;
        TreeNode<K,V> prev;    // needed to unlink next upon deletion
        boolean red;
        TreeNode(int hash, K key, V val, Node<K,V> next) {
            super(hash, key, val, next);
        }

        /**
         * Returns root of tree containing this node.
         */
        final TreeNode<K,V> root() {
            for (TreeNode<K,V> r = this, p;;) {
                if ((p = r.parent) == null)
                    return r;
                r = p;
            }
        }

        /**
         * Ensures that the given root is the first node of its bin.
         */
        static <K,V> void moveRootToFront(Node<K,V>[] tab, TreeNode<K,V> root) {
            int n;
            if (root != null && tab != null && (n = tab.length) > 0) {
                int index = (n - 1) & root.hash;
                TreeNode<K,V> first = (TreeNode<K,V>)tab[index];
                if (root != first) {
                    Node<K,V> rn;
                    tab[index] = root;
                    TreeNode<K,V> rp = root.prev;
                    if ((rn = root.next) != null)
                        ((TreeNode<K,V>)rn).prev = rp;
                    if (rp != null)
                        rp.next = rn;
                    if (first != null)
                        first.prev = root;
                    root.next = first;
                    root.prev = null;
                }
                assert checkInvariants(root);
            }
        }

        /**
         * Finds the node starting at root p with the given hash and key.
         * The kc argument caches comparableClassFor(key) upon first use
         * comparing keys.
         */
        final TreeNode<K,V> find(int h, Object k, Class<?> kc) {
            TreeNode<K,V> p = this;
            do {
                int ph, dir; K pk;
                TreeNode<K,V> pl = p.left, pr = p.right, q;
                if ((ph = p.hash) > h)
                    p = pl;
                else if (ph < h)
                    p = pr;
                else if ((pk = p.key) == k || (k != null && k.equals(pk)))
                    return p;
                else if (pl == null)
                    p = pr;
                else if (pr == null)
                    p = pl;
                else if ((kc != null ||
                          (kc = comparableClassFor(k)) != null) &&
                         (dir = compareComparables(kc, k, pk)) != 0)
                    p = (dir < 0) ? pl : pr;
                else if ((q = pr.find(h, k, kc)) != null)
                    return q;
                else
                    p = pl;
            } while (p != null);
            return null;
        }

        /**
         * Calls find for root node.
         */
        final TreeNode<K,V> getTreeNode(int h, Object k) {
            return ((parent != null) ? root() : this).find(h, k, null);
        }

        /**
         * Tie-breaking utility for ordering insertions when equal
         * hashCodes and non-comparable. We don't require a total
         * order, just a consistent insertion rule to maintain
         * equivalence across rebalancings. Tie-breaking further than
         * necessary simplifies testing a bit.
         */
        static int tieBreakOrder(Object a, Object b) {
            int d;
            if (a == null || b == null ||
                (d = a.getClass().getName().
                 compareTo(b.getClass().getName())) == 0)
                d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
                     -1 : 1);
            return d;
        }

        /**
         * Forms tree of the nodes linked from this node.
         * @return root of tree
         */
        final void treeify(Node<K,V>[] tab) {
            TreeNode<K,V> root = null;
            for (TreeNode<K,V> x = this, next; x != null; x = next) {
                next = (TreeNode<K,V>)x.next;
                x.left = x.right = null;
                if (root == null) {
                    x.parent = null;
                    x.red = false;
                    root = x;
                }
                else {
                    K k = x.key;
                    int h = x.hash;
                    Class<?> kc = null;
                    for (TreeNode<K,V> p = root;;) {
                        int dir, ph;
                        K pk = p.key;
                        if ((ph = p.hash) > h)
                            dir = -1;
                        else if (ph < h)
                            dir = 1;
                        else if ((kc == null &&
                                  (kc = comparableClassFor(k)) == null) ||
                                 (dir = compareComparables(kc, k, pk)) == 0)
                            dir = tieBreakOrder(k, pk);

                        TreeNode<K,V> xp = p;
                        if ((p = (dir <= 0) ? p.left : p.right) == null) {
                            x.parent = xp;
                            if (dir <= 0)
                                xp.left = x;
                            else
                                xp.right = x;
                            root = balanceInsertion(root, x);
                            break;
                        }
                    }
                }
            }
            moveRootToFront(tab, root);
        }

        /**
         * Returns a list of non-TreeNodes replacing those linked from
         * this node.
         */
        final Node<K,V> untreeify(HashMap<K,V> map) {
            Node<K,V> hd = null, tl = null;
            for (Node<K,V> q = this; q != null; q = q.next) {
                Node<K,V> p = map.replacementNode(q, null);
                if (tl == null)
                    hd = p;
                else
                    tl.next = p;
                tl = p;
            }
            return hd;
        }

        /**
         * Tree version of putVal.
         */
        final TreeNode<K,V> putTreeVal(HashMap<K,V> map, Node<K,V>[] tab,
                                       int h, K k, V v) {
            Class<?> kc = null;
            boolean searched = false;
            TreeNode<K,V> root = (parent != null) ? root() : this;
            for (TreeNode<K,V> p = root;;) {
                int dir, ph; K pk;
                if ((ph = p.hash) > h)
                    dir = -1;
                else if (ph < h)
                    dir = 1;
                else if ((pk = p.key) == k || (k != null && k.equals(pk)))
                    return p;
                else if ((kc == null &&
                          (kc = comparableClassFor(k)) == null) ||
                         (dir = compareComparables(kc, k, pk)) == 0) {
                    if (!searched) {
                        TreeNode<K,V> q, ch;
                        searched = true;
                        if (((ch = p.left) != null &&
                             (q = ch.find(h, k, kc)) != null) ||
                            ((ch = p.right) != null &&
                             (q = ch.find(h, k, kc)) != null))
                            return q;
                    }
                    dir = tieBreakOrder(k, pk);
                }

                TreeNode<K,V> xp = p;
                if ((p = (dir <= 0) ? p.left : p.right) == null) {
                    Node<K,V> xpn = xp.next;
                    TreeNode<K,V> x = map.newTreeNode(h, k, v, xpn);
                    if (dir <= 0)
                        xp.left = x;
                    else
                        xp.right = x;
                    xp.next = x;
                    x.parent = x.prev = xp;
                    if (xpn != null)
                        ((TreeNode<K,V>)xpn).prev = x;
                    moveRootToFront(tab, balanceInsertion(root, x));
                    return null;
                }
            }
        }

        /**
         * Removes the given node, that must be present before this call.
         * This is messier than typical red-black deletion code because we
         * cannot swap the contents of an interior node with a leaf
         * successor that is pinned by "next" pointers that are accessible
         * independently during traversal. So instead we swap the tree
         * linkages. If the current tree appears to have too few nodes,
         * the bin is converted back to a plain bin. (The test triggers
         * somewhere between 2 and 6 nodes, depending on tree structure).
         */
        final void removeTreeNode(HashMap<K,V> map, Node<K,V>[] tab,
                                  boolean movable) {
            int n;
            if (tab == null || (n = tab.length) == 0)
                return;
            int index = (n - 1) & hash;
            TreeNode<K,V> first = (TreeNode<K,V>)tab[index], root = first, rl;
            TreeNode<K,V> succ = (TreeNode<K,V>)next, pred = prev;
            if (pred == null)
                tab[index] = first = succ;
            else
                pred.next = succ;
            if (succ != null)
                succ.prev = pred;
            if (first == null)
                return;
            if (root.parent != null)
                root = root.root();
            if (root == null || root.right == null ||
                (rl = root.left) == null || rl.left == null) {
                tab[index] = first.untreeify(map);  // too small
                return;
            }
            TreeNode<K,V> p = this, pl = left, pr = right, replacement;
            if (pl != null && pr != null) {
                TreeNode<K,V> s = pr, sl;
                while ((sl = s.left) != null) // find successor
                    s = sl;
                boolean c = s.red; s.red = p.red; p.red = c; // swap colors
                TreeNode<K,V> sr = s.right;
                TreeNode<K,V> pp = p.parent;
                if (s == pr) { // p was s's direct parent
                    p.parent = s;
                    s.right = p;
                }
                else {
                    TreeNode<K,V> sp = s.parent;
                    if ((p.parent = sp) != null) {
                        if (s == sp.left)
                            sp.left = p;
                        else
                            sp.right = p;
                    }
                    if ((s.right = pr) != null)
                        pr.parent = s;
                }
                p.left = null;
                if ((p.right = sr) != null)
                    sr.parent = p;
                if ((s.left = pl) != null)
                    pl.parent = s;
                if ((s.parent = pp) == null)
                    root = s;
                else if (p == pp.left)
                    pp.left = s;
                else
                    pp.right = s;
                if (sr != null)
                    replacement = sr;
                else
                    replacement = p;
            }
            else if (pl != null)
                replacement = pl;
            else if (pr != null)
                replacement = pr;
            else
                replacement = p;
            if (replacement != p) {
                TreeNode<K,V> pp = replacement.parent = p.parent;
                if (pp == null)
                    root = replacement;
                else if (p == pp.left)
                    pp.left = replacement;
                else
                    pp.right = replacement;
                p.left = p.right = p.parent = null;
            }

            TreeNode<K,V> r = p.red ? root : balanceDeletion(root, replacement);

            if (replacement == p) {  // detach
                TreeNode<K,V> pp = p.parent;
                p.parent = null;
                if (pp != null) {
                    if (p == pp.left)
                        pp.left = null;
                    else if (p == pp.right)
                        pp.right = null;
                }
            }
            if (movable)
                moveRootToFront(tab, r);
        }

        /**
         * Splits nodes in a tree bin into lower and upper tree bins,
         * or untreeifies if now too small. Called only from resize;
         * see above discussion about split bits and indices.
         *
         * @param map the map
         * @param tab the table for recording bin heads
         * @param index the index of the table being split
         * @param bit the bit of hash to split on
         */
        final void split(HashMap<K,V> map, Node<K,V>[] tab, int index, int bit) {
            TreeNode<K,V> b = this;
            // Relink into lo and hi lists, preserving order
            TreeNode<K,V> loHead = null, loTail = null;
            TreeNode<K,V> hiHead = null, hiTail = null;
            int lc = 0, hc = 0;
            for (TreeNode<K,V> e = b, next; e != null; e = next) {
                next = (TreeNode<K,V>)e.next;
                e.next = null;
                if ((e.hash & bit) == 0) {
                    if ((e.prev = loTail) == null)
                        loHead = e;
                    else
                        loTail.next = e;
                    loTail = e;
                    ++lc;
                }
                else {
                    if ((e.prev = hiTail) == null)
                        hiHead = e;
                    else
                        hiTail.next = e;
                    hiTail = e;
                    ++hc;
                }
            }

            if (loHead != null) {
                if (lc <= UNTREEIFY_THRESHOLD)
                    tab[index] = loHead.untreeify(map);
                else {
                    tab[index] = loHead;
                    if (hiHead != null) // (else is already treeified)
                        loHead.treeify(tab);
                }
            }
            if (hiHead != null) {
                if (hc <= UNTREEIFY_THRESHOLD)
                    tab[index + bit] = hiHead.untreeify(map);
                else {
                    tab[index + bit] = hiHead;
                    if (loHead != null)
                        hiHead.treeify(tab);
                }
            }
        }

        /* ------------------------------------------------------------ */
        // Red-black tree methods, all adapted from CLR

        static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
                                              TreeNode<K,V> p) {
            TreeNode<K,V> r, pp, rl;
            if (p != null && (r = p.right) != null) {
                if ((rl = p.right = r.left) != null)
                    rl.parent = p;
                if ((pp = r.parent = p.parent) == null)
                    (root = r).red = false;
                else if (pp.left == p)
                    pp.left = r;
                else
                    pp.right = r;
                r.left = p;
                p.parent = r;
            }
            return root;
        }

        static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
                                               TreeNode<K,V> p) {
            TreeNode<K,V> l, pp, lr;
            if (p != null && (l = p.left) != null) {
                if ((lr = p.left = l.right) != null)
                    lr.parent = p;
                if ((pp = l.parent = p.parent) == null)
                    (root = l).red = false;
                else if (pp.right == p)
                    pp.right = l;
                else
                    pp.left = l;
                l.right = p;
                p.parent = l;
            }
            return root;
        }

        static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
                                                    TreeNode<K,V> x) {
            x.red = true;
            for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
                if ((xp = x.parent) == null) {
                    x.red = false;
                    return x;
                }
                else if (!xp.red || (xpp = xp.parent) == null)
                    return root;
                if (xp == (xppl = xpp.left)) {
                    if ((xppr = xpp.right) != null && xppr.red) {
                        xppr.red = false;
                        xp.red = false;
                        xpp.red = true;
                        x = xpp;
                    }
                    else {
                        if (x == xp.right) {
                            root = rotateLeft(root, x = xp);
                            xpp = (xp = x.parent) == null ? null : xp.parent;
                        }
                        if (xp != null) {
                            xp.red = false;
                            if (xpp != null) {
                                xpp.red = true;
                                root = rotateRight(root, xpp);
                            }
                        }
                    }
                }
                else {
                    if (xppl != null && xppl.red) {
                        xppl.red = false;
                        xp.red = false;
                        xpp.red = true;
                        x = xpp;
                    }
                    else {
                        if (x == xp.left) {
                            root = rotateRight(root, x = xp);
                            xpp = (xp = x.parent) == null ? null : xp.parent;
                        }
                        if (xp != null) {
                            xp.red = false;
                            if (xpp != null) {
                                xpp.red = true;
                                root = rotateLeft(root, xpp);
                            }
                        }
                    }
                }
            }
        }

        static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
                                                   TreeNode<K,V> x) {
            for (TreeNode<K,V> xp, xpl, xpr;;)  {
                if (x == null || x == root)
                    return root;
                else if ((xp = x.parent) == null) {
                    x.red = false;
                    return x;
                }
                else if (x.red) {
                    x.red = false;
                    return root;
                }
                else if ((xpl = xp.left) == x) {
                    if ((xpr = xp.right) != null && xpr.red) {
                        xpr.red = false;
                        xp.red = true;
                        root = rotateLeft(root, xp);
                        xpr = (xp = x.parent) == null ? null : xp.right;
                    }
                    if (xpr == null)
                        x = xp;
                    else {
                        TreeNode<K,V> sl = xpr.left, sr = xpr.right;
                        if ((sr == null || !sr.red) &&
                            (sl == null || !sl.red)) {
                            xpr.red = true;
                            x = xp;
                        }
                        else {
                            if (sr == null || !sr.red) {
                                if (sl != null)
                                    sl.red = false;
                                xpr.red = true;
                                root = rotateRight(root, xpr);
                                xpr = (xp = x.parent) == null ?
                                    null : xp.right;
                            }
                            if (xpr != null) {
                                xpr.red = (xp == null) ? false : xp.red;
                                if ((sr = xpr.right) != null)
                                    sr.red = false;
                            }
                            if (xp != null) {
                                xp.red = false;
                                root = rotateLeft(root, xp);
                            }
                            x = root;
                        }
                    }
                }
                else { // symmetric
                    if (xpl != null && xpl.red) {
                        xpl.red = false;
                        xp.red = true;
                        root = rotateRight(root, xp);
                        xpl = (xp = x.parent) == null ? null : xp.left;
                    }
                    if (xpl == null)
                        x = xp;
                    else {
                        TreeNode<K,V> sl = xpl.left, sr = xpl.right;
                        if ((sl == null || !sl.red) &&
                            (sr == null || !sr.red)) {
                            xpl.red = true;
                            x = xp;
                        }
                        else {
                            if (sl == null || !sl.red) {
                                if (sr != null)
                                    sr.red = false;
                                xpl.red = true;
                                root = rotateLeft(root, xpl);
                                xpl = (xp = x.parent) == null ?
                                    null : xp.left;
                            }
                            if (xpl != null) {
                                xpl.red = (xp == null) ? false : xp.red;
                                if ((sl = xpl.left) != null)
                                    sl.red = false;
                            }
                            if (xp != null) {
                                xp.red = false;
                                root = rotateRight(root, xp);
                            }
                            x = root;
                        }
                    }
                }
            }
        }

        /**
         * Recursive invariant check
         */
        static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
            TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
                tb = t.prev, tn = (TreeNode<K,V>)t.next;
            if (tb != null && tb.next != t)
                return false;
            if (tn != null && tn.prev != t)
                return false;
            if (tp != null && t != tp.left && t != tp.right)
                return false;
            if (tl != null && (tl.parent != t || tl.hash > t.hash))
                return false;
            if (tr != null && (tr.parent != t || tr.hash < t.hash))
                return false;
            if (t.red && tl != null && tl.red && tr != null && tr.red)
                return false;
            if (tl != null && !checkInvariants(tl))
                return false;
            if (tr != null && !checkInvariants(tr))
                return false;
            return true;
        }
    }
父类

先从父类开始看,TreeNode继承LinkedHashMap.Entry,看下实现代码

    /**
     * HashMap.Node subclass for normal LinkedHashMap entries.
     */
    static class Entry<K,V> extends HashMap.Node<K,V> {
        Entry<K,V> before, after;
        Entry(int hash, K key, V value, Node<K,V> next) {
            super(hash, key, value, next);
        }
    }

可以看到,而LinkedHashMap.Entry还是继承的HashMap.Node。Entry扩展了before、after两个指针。

TreeNode的变量
        TreeNode<K,V> parent;  // red-black tree links
        TreeNode<K,V> left;
        TreeNode<K,V> right;
        TreeNode<K,V> prev;    // needed to unlink next upon deletion
        boolean red;

可以看到,在LinkedHashMap.Entry的基础上,TreeNode又扩展了以下信息:

  • parent:父根节点
  • left:左子节点
  • right:右子节点
  • prev:?这个没理解,为什么还需要记录一个prev
  • red:当前节点颜色,默认为false的话,那就是black

相关文章

  • HashMap小探(三)之红黑树

    HashMap中的红黑树 红黑树 平衡二叉查找树 红黑树是一种平衡二叉查找树(Binary Search Tree...

  • HashMap底层数据结构之链表转红黑树的具体时机

    前言 本文从三个部分去探究HashMap的链表转红黑树的具体时机: 1、从HashMap中有关“链表转红黑树”阈值...

  • 小探红黑树

    本文对红黑树的特点和性质进行说明,不对红黑树的操作等问题进行代码方面的探究。 1、上帝视角看红黑树 红黑树的本质是...

  • HashMap

    HashMap是数组+链表+红黑树。 Node.hash是key的hash1.8的HashMap增加了红黑树来增加...

  • 彻底理解红黑树(二)之 插入

    彻底理解红黑树(一)之 二叉搜索树彻底理解红黑树(二)之 插入彻底理解红黑树(三)之 删除 前言 红黑树的插入情况...

  • 彻底理解红黑树(三)之 删除

    彻底理解红黑树(一)之 二叉搜索树彻底理解红黑树(二)之 插入彻底理解红黑树(三)之 删除 前言 红黑树的删除情况...

  • Java类集框架 —— LinkedHashMap源码分析

    前言 我们知道HashMap底层是采用数组+单向线性链表/红黑树来实现的,HashMap在扩容或者链表与红黑树转换...

  • 每周阅读(6/27)

    HashMap的实现和原理,如何运用红黑树实现扩容优化。Java8系列之重新认识HashMap Google的代码...

  • hashmap源码分析

    HashMap的数据结构 从上图中可以很清楚的看到,HashMap的数据结构是数组+链表+红黑树(红黑树since...

  • jdk8 hashmap

    jdk8的HashMap是桶+链表+红黑树实现的,由于加入了红黑树以及其他优化,HashMap的插入查找的性能提高...

网友评论

    本文标题:HashMap小探(三)之红黑树

    本文链接:https://www.haomeiwen.com/subject/nxqhdqtx.html