美文网首页java8的世界程序员
java8 in action:第七章学习:并行数据处理与性能

java8 in action:第七章学习:并行数据处理与性能

作者: 墙角的牵牛花 | 来源:发表于2017-06-23 14:25 被阅读19次

    并行流:把一个内容分成多个数据块,并用不同的线程分别处理每个数据块的流。

    先做一个简单的测试,测试传统for循环,与顺序流,并行流的速度。

    /**
     * 并行测试 最慢
     * @param n
     * @return
     */
    public static long parallelSum(long n){
        return Stream.iterate(1L, i -> i+1)
                     .limit(n)
                     .parallel()
                     .reduce(0L, Long::sum);
    }
    
    /**
     * 顺序测试 比并行快
     * @param n
     * @return
     */
    public static long sequentialSum(long n){
        return Stream.iterate(1L, i -> i+1)
                     .limit(n)
                     .reduce(0L, Long::sum);
    }
    
    /**
     * 传统for 更底层 最快
     * @param n
     * @return
     */
    public static long iteativeSum(long n){
        long result=0;
        for (int i = 0; i < n; i++) {
            result+=i;
        }
        return result;
    }
    

    引入LongStream修改算法:

        /**
     * 比传统for 还快
     * @param n
     * @return
     */
    public static long rangedSum(long n){
        return LongStream.rangeClosed(1, n)
                         .reduce(0L, Long::sum);
    }
    
    System.out.println("并行测试:"+measureSumPerf(Test7::parallelSum, 10000000));
        System.out.println("顺序测试:"+measureSumPerf(Test7::sequentialSum, 10000000));
        System.out.println("传统for:"+measureSumPerf(Test7::iteativeSum, 10000000));
        System.out.println("LongStream:"+measureSumPerf(Test7::rangedSum, 10000000));
    
    并行测试:404
    顺序测试:143
    传统for:7
    LongStream:4
    

    理论上,并行流比顺序流要更快,事实上并不是这样的。传统for循环更接近底层,表现也不差。

    几点改善并行流的方法:

    1.顺序流转换成并行流并不一定快。
    2.避免装箱,使用IntStream,LongStream,DoubleStream。
    3.注意limit,findFirst依赖元素顺序的流,在顺序流上的性能本身就不错。
    4.流的总成本。
    5.数据量小的时候并行流并不一定有好的效果。
    6.考虑分拆效率,ArrayList比LinkedList效率更高。range工产方法创建的原始流类型也可快速分解。
    7.考虑处理流时筛选等丢弃元素等情况。
    8.考虑合并步骤的代价再决定。

    //流的数据源与可分解性对比
        //ArrayList  优
        //LinkedList 差
        //IntStream.range 优
        //Stream.iterate 差
        //HashSet        好
        //TreeSet        好
    

    使用RecursiveTask分支框架

    public class ForkJoinSumCalculator extends RecursiveTask<Long> {
    
    private final long [] numbers;
    private final int start;
    private final int end;
    
    //不再将任务分解为子任务的数组大小
    public static final long THRESHOLD=10000;
    
    
    
    
    public ForkJoinSumCalculator(long[] numbers, int start, int end) {
        this.numbers = numbers;
        this.start = start;
        this.end = end;
    }
    
    
    
    public ForkJoinSumCalculator(long [] numbers) {
        this(numbers,0,numbers.length);
    }
    
    @Override
    protected Long compute() {
        int length=end-start;
        if (length<=THRESHOLD) {
            return computeSequentially();
        }
        ForkJoinSumCalculator leftTask=new ForkJoinSumCalculator(numbers,start,start+length/2);
        leftTask.fork();
        ForkJoinSumCalculator rightTask=new ForkJoinSumCalculator(numbers,start,start+length/2);
        Long rightResult=rightTask.compute();//同步执行
        Long leftResult=leftTask.join();//读取第一个线程的结果,未完成就等待
        return leftResult+rightResult;//两个任务结果组合
    }
    
    
    
    private Long computeSequentially() {
        long sum=0;
        for (int i = start; i < end; i++) {
            sum+=numbers[i];
        }
        return sum;
    }
    
    /**
     * 测试方法
     * @param n
     * @return
     */
    public static long forkJoinSum(long n){
        long [] numbers=LongStream.rangeClosed(1, n).toArray();
        ForkJoinTask<Long> task=new ForkJoinSumCalculator(numbers);
        return new ForkJoinPool().invoke(task);
    }
    

    }

    计算一串字符串中字符的个数,不含空格

    public class WordCounter {
    private static final String STR = "I am a Android engineer ! You can you up !";
    private final int counter;
    private final boolean lastSpace;
    public WordCounter(int counter, boolean lastSpace) {
        this.counter = counter;
        this.lastSpace = lastSpace;
    }
    
    public WordCounter accumulate(Character c){
        if (Character.isWhitespace(c)) {
            return lastSpace ? this : new WordCounter(counter, true);
        }else{
            return lastSpace ? new WordCounter(counter+1, false):this;
        }
    }
    
    public WordCounter combine(WordCounter wordCounter){
        return new WordCounter(counter+wordCounter.counter, wordCounter.lastSpace);
    }
    
    public int getCounter(){
        return counter;
    }
    
    public static int countWords(Stream<Character> stream){
        WordCounter wordCounter=stream.reduce(new WordCounter(0, true),
                WordCounter::accumulate,WordCounter::combine);
        return wordCounter.getCounter();
    }
    
    public static void main(String[] args) {
        Stream<Character> stream=IntStream.range(0, STR.length()).mapToObj(STR::charAt);
        System.out.println(countWords(stream));
                                
    }
    }
    
    //改成并行流测试,出现异常。
    
    System.out.println(countWords(stream.parallel()));
    

    Spliterator实现上面demo

    public class WordCounterSpliterator implements Spliterator<Character> {
    
    private final String str;
    private int currentChar=0;
    
    
    
    public WordCounterSpliterator(String str) {
        this.str = str;
    }
    
    /**
     * 把当前位置Character传递给Consumer
     */
    @Override
    public boolean tryAdvance(Consumer<? super Character> action) {
        action.accept(str.charAt(currentChar++));//处理当前字符串
        return currentChar <str.length();//true 表示还要要处理
    }
    
    
    @Override
    public Spliterator<Character> trySplit() {
        int currentSize=str.length()-currentChar;
        if (currentSize<10) {
            return null; // 解析数小于10时执行顺序处理
        }
        for (int splitPos = currentSize/2+currentChar; splitPos < str.length(); splitPos++) {
            if (Character.isWhitespace(str.charAt(splitPos))) {
                Spliterator<Character> spliterator=new WordCounterSpliterator(str.substring(currentChar, splitPos));
                currentChar=splitPos;//将起始位置设为裁缝位置
                return spliterator;
            }
        }
        return null;
    }
    
    /**
     * 总长度与当前位置的差
     */
    @Override
    public long estimateSize() {
        return str.length()-currentChar;
    }
    
    /**
     * ORDERED 顺序
     * SIZED   estimateSize返回值精确
     * SUBSIZED  trySplit创建的其他Spliterator 大小确切
     * NONNULL   不为null
     * IMMUTABLE 不可变(String本身不可变)
     */
    @Override
    public int characteristics() {
        return ORDERED+SIZED+SUBSIZED+NONNULL+IMMUTABLE;
    }
    
    public static int countWords(Stream<Character> stream){
        WordCounter wordCounter=stream.reduce(new WordCounter(0, true),
                WordCounter::accumulate,WordCounter::combine);
        return wordCounter.getCounter();
    }
    
    public static void main(String[] args) {
        String str="Characteristic value signifying that an encounter order is defined for elements.";
        Spliterator<Character> spliterator=new WordCounterSpliterator(str);
        Stream<Character> stream=StreamSupport.stream(spliterator, true);
        
        System.out.println(countWords(stream));
        
    }
    }
    

    好了,就到这里了。

    相关文章

      网友评论

        本文标题:java8 in action:第七章学习:并行数据处理与性能

        本文链接:https://www.haomeiwen.com/subject/nzgqcxtx.html