1.周六把前三章复习完
2.Review的所有题!!
1.5 p32
First
Ax = b <=> Ux = c, where U - a new coefficient matrix
E F G elementary matrices: (step1, 2, 3) 有固定填充格式!
i - j*L
=> (-L) into (i, j)
G F E A = U,
E^-1 F^-1 G^-1 * U = A where (E^-1 F^-1 G^-1) = L
so LU = A. Triangular factorization
1H: Triangular factorization with no exchange of row. 没换行。
注意:LU(尤其是U)并不一定1s on the diagonal.
Second p36
A = LDU
D - diagonal matrix of pivots.
Third
Permutation!
1s on different row and column.
P^-1 is always the same as P^T
(p38注意先操作的要在左侧,且最接近被操作矩阵。)
PA = LDU
1.6 Inverse and Transposes
A*A^-1 = I
- Ax = 0时没有逆矩阵。- No matrix can bring 0 back to x!! x = A^-1 * Ax = A^-1
- 0 - 不可能的!
【2x2系统有公式, 别忘了前面的系数1/(ad-bc)】 - 两个逆矩阵的乘积也是逆矩阵
- False. A matrix cannot necessarily be factored into the form A = LU because you may need to do row exchanges in order for elimination to succeed.
(True or false)
性质(p46):
- 2 by 2 inverse: ad-bc ==0 (the determinant is not zero!).
- Inverse of diagonal matrix - no diagonal entries are zero.
(d_n => (1/d_n))- (AB)^-1 = (B-1)*(A-1). The inverse come in reverse order.
(ABC)^-1 = (C-1)*(B-1)*(A^-1)
Gauss-Jordon method to calculate inverse:
[A e1 e2 e3] =======[I A^-1] (I - identity matrix)
通过1某行减去某行倍数Eij 2某行自己倍数D 3换行Pij 操作;
后面矩阵的变化,表示对A进行的操作(前乘矩阵: "every G-J step is a multiplication on the left by an elementary matrix")
(操作时别忘了后面的e1 e2 e3...)
Notice: when there are zeros below AND above pivots, then the product of the pivots/diagonals = determinant!
- Invertible = nonsingular => determinant, pivots, all eigenvalues == 0
(pivots == 0 所以中轴线上不能有0)
The transpose matrix: p50
Symmetrc Matrices: A^T = A
(AB)^T = (BT)(AT)
(A-1)T = (AT)-1, therefore, (A-1)T * A^T = I
网友评论