美文网首页
第2周编程作业-Coursera机器学习-吴恩达

第2周编程作业-Coursera机器学习-吴恩达

作者: 烟若清尘 | 来源:发表于2019-05-20 22:56 被阅读0次

    提交作业

    cd 'yourpath' % 使用octave命令行,进入到你的文件所在的目录
    submit() % 接下来输入你的coursera上的邮箱和token文件,文件自动提交判断,稍微等一下有结果。如果没有结果,更换token,再次提交。
    
    第二次作业提交结果

    必做作业:Linear regression with one variable

    仔细阅读ex1.m,里面按照步骤依次填写代码。注意:ex1.m中的文件不要你修改,是每部分中的函数文件要你修改。

    ex1.m 中Part 1: Basic Function

    % x refers to the population size in 10,000s
    % y refers to the profit in $10,000s
    %
    %% Initialization
    clear ; close all; clc
    
    %% ==================== Part 1: Basic Function ====================
    % Complete warmUpExercise.m
    fprintf('Running warmUpExercise ... \n');
    fprintf('5x5 Identity Matrix: \n');
    warmUpExercise()
    
    fprintf('Program paused. Press enter to continue.\n');
    pause;
    

    warmUpExercise.m 应该修改代码为:

    function A = warmUpExercise()
    %WARMUPEXERCISE Example function in octave
    %   A = WARMUPEXERCISE() is an example function that returns the 5x5 identity matrix
    
    A = [];
    % ============= YOUR CODE HERE ==============
    % Instructions: Return the 5x5 identity matrix 
    %               In octave, we return values by defining which variables
    %               represent the return values (at the top of the file)
    %               and then set them accordingly. 
    A = eye(5);
    % ===========================================
    end
    

    ex1.m 中Part 2: Plotting

    %% ======================= Part 2: Plotting =======================
    fprintf('Plotting Data ...\n')
    data = load('ex1data1.txt');
    X = data(:, 1); y = data(:, 2);
    m = length(y); % number of training examples
    
    % Plot Data
    % Note: You have to complete the code in plotData.m
    plotData(X, y);
    
    fprintf('Program paused. Press enter to continue.\n');
    pause;
    

    plotData.m文件修改为:

    function plotData(x, y)
    %PLOTDATA Plots the data points x and y into a new figure 
    %   PLOTDATA(x,y) plots the data points and gives the figure axes labels of
    %   population and profit.
    
    figure; % open a new figure window
    
    % ====================== YOUR CODE HERE ======================
    % Instructions: Plot the training data into a figure using the 
    %               "figure" and "plot" commands. Set the axes labels using
    %               the "xlabel" and "ylabel" commands. Assume the 
    %               population and revenue data have been passed in
    %               as the x and y arguments of this function.
    %
    % Hint: You can use the 'rx' option with plot to have the markers
    %       appear as red crosses. Furthermore, you can make the
    %       markers larger by using plot(..., 'rx', 'MarkerSize', 10);
    
    plot(x, y, 'rx', 'MarkerSize', 10);
    xlabel('Population of City in 10,000s');
    ylabel('Profit in $10,000s');
    % ============================================================
    end
    

    ex1.m 中Part 3: Cost and Gradient descent

    %% =================== Part 3: Cost and Gradient descent ===================
    % Add a column of ones to x:这里X增加了一列,第一列全是1,X变为 m x (n+1)。这样X可以和 theta对应相乘,因为theta是下标从0到n。
    X = [ones(m, 1), data(:,1)]; 
    theta = zeros(2, 1); % initialize fitting parameters
    
    % Some gradient descent settings
    iterations = 1500;
    alpha = 0.01;
    
    fprintf('\nTesting the cost function ...\n')
    % compute and display initial cost
    J = computeCost(X, y, theta);
    fprintf('With theta = [0 ; 0]\nCost computed = %f\n', J);
    fprintf('Expected cost value (approx) 32.07\n');
    
    % further testing of the cost function
    J = computeCost(X, y, [-1 ; 2]);
    fprintf('\nWith theta = [-1 ; 2]\nCost computed = %f\n', J);
    fprintf('Expected cost value (approx) 54.24\n');
    
    fprintf('Program paused. Press enter to continue.\n');
    pause;
    
    fprintf('\nRunning Gradient Descent ...\n')
    % run gradient descent
    theta = gradientDescent(X, y, theta, alpha, iterations);
    
    % print theta to screen
    fprintf('Theta found by gradient descent:\n');
    fprintf('%f\n', theta);
    fprintf('Expected theta values (approx)\n');
    fprintf(' -3.6303\n  1.1664\n\n');
    
    % Plot the linear fit
    hold on; % keep previous plot visible
    plot(X(:,2), X*theta, '-')
    legend('Training data', 'Linear regression')
    hold off % don't overlay any more plots on this figure
    
    % Predict values for population sizes of 35,000 and 70,000
    predict1 = [1, 3.5] *theta;
    fprintf('For population = 35,000, we predict a profit of %f\n',...
        predict1*10000);
    predict2 = [1, 7] * theta;
    fprintf('For population = 70,000, we predict a profit of %f\n',...
        predict2*10000);
    
    fprintf('Program paused. Press enter to continue.\n');
    pause;
    

    1.Computing the cost J(\theta)

    课程中公式是这样:

    计算代价函数
    (1)首先计算
    公式中小写x代表一个样本,而我们给出的数据是X,X是m行小写x组成,所以我们要考虑用矩阵来做。我们这样做:。
    • X是一个m x (n+1)的矩阵,并且第一列全是1.
    • theta 是一个 (n+1) x 1的列向量
    • X * theta可以得到 m x 1的向量,每一行都是一个小写x样本与 \theta_j 对应乘积。

    (2)计算J_{\theta}
    J_{\theta}是所有样本的h_{\theta}(x^{(i)}) - y^{i}的平方之和,这里就有一个求和。

    综合2步,computeCost.m 代码如下:

    function J = computeCost(X, y, theta)
    %COMPUTECOST Compute cost for linear regression
    %   J = COMPUTECOST(X, y, theta) computes the cost of using theta as the
    %   parameter for linear regression to fit the data points in X and y
    
    % Initialize some useful values
    m = length(y); % number of training examples
    
    % You need to return the following variables correctly 
    J = 0;
    
    % ====================== YOUR CODE HERE ======================
    % Instructions: Compute the cost of a particular choice of theta
    %               You should set J to the cost.
    
    h = X * theta;
    J = 1/(2*m) * sum( (h - y).^2 );
    % =========================================================================
    end
    

    2.Gradient descent:使用梯度更新算法

    梯度下降算法:

    梯度下降算法
    这里的 是其中第 j 行。根据上文介绍的计算 方法。
    1. h_{\theta}(x^{(i)}) - y^{(i)} 可以用 X * theta - y 求解,得到 m x 1的向量,每行的值就是h_{\theta}(x^{(i)}) - y^{(i)}
    2. \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)} = X^{T} * (X * theta - y)
    3. 最后得到theta是一个 (n+1) x 1向量

    gradientDescent.m 代码入下:

    function [theta, J_history] = gradientDescent(X, y, theta, alpha, num_iters)
    %GRADIENTDESCENT Performs gradient descent to learn theta
    %   theta = GRADIENTDESCENT(X, y, theta, alpha, num_iters) updates theta by 
    %   taking num_iters gradient steps with learning rate alpha
    
    % Initialize some useful values
    m = length(y); % number of training examples
    J_history = zeros(num_iters, 1);
    
    for iter = 1:num_iters
    
        % ====================== YOUR CODE HERE ======================
        % Instructions: Perform a single gradient step on the parameter vector
        %               theta. 
        %
        % Hint: While debugging, it can be useful to print out the values
        %       of the cost function (computeCost) and gradient here.
        %
        theta = theta - alpha/m * X' * (X * theta - y);
        % ============================================================
    
        % Save the cost J in every iteration    
        J_history(iter) = computeCost(X, y, theta);
    
    end
    end
    

    ex1.m 中Part 4: Visualizing J(theta_0, theta_1)

    这部分没有相应的函数文件,所以不需要修改。

    %% ============= Part 4: Visualizing J(theta_0, theta_1) =============
    fprintf('Visualizing J(theta_0, theta_1) ...\n')
    
    % Grid over which we will calculate J
    theta0_vals = linspace(-10, 10, 100);
    theta1_vals = linspace(-1, 4, 100);
    
    % initialize J_vals to a matrix of 0's
    J_vals = zeros(length(theta0_vals), length(theta1_vals));
    
    % Fill out J_vals
    for i = 1:length(theta0_vals)
        for j = 1:length(theta1_vals)
          t = [theta0_vals(i); theta1_vals(j)];
          J_vals(i,j) = computeCost(X, y, t);
        end
    end
    
    
    % Because of the way meshgrids work in the surf command, we need to
    % transpose J_vals before calling surf, or else the axes will be flipped
    J_vals = J_vals';
    % Surface plot
    figure;
    surf(theta0_vals, theta1_vals, J_vals)
    xlabel('\theta_0'); ylabel('\theta_1');
    
    % Contour plot
    figure;
    % Plot J_vals as 15 contours spaced logarithmically between 0.01 and 100
    contour(theta0_vals, theta1_vals, J_vals, logspace(-2, 3, 20))
    xlabel('\theta_0'); ylabel('\theta_1');
    hold on;
    plot(theta(1), theta(2), 'rx', 'MarkerSize', 10, 'LineWidth', 2);
    

    选做作业:Linear regression with multiple variables

    还是应该先看ex1_multi.m ,按照步骤写代码。

    ex1_multi.m中Part 1: Feature Normalization

    %% ================ Part 1: Feature Normalization ================
    
    %% Clear and Close Figures
    clear ; close all; clc
    
    fprintf('Loading data ...\n');
    
    %% Load Data
    data = load('ex1data2.txt');
    X = data(:, 1:2);
    y = data(:, 3);
    m = length(y);
    
    % Print out some data points
    fprintf('First 10 examples from the dataset: \n');
    fprintf(' x = [%.0f %.0f], y = %.0f \n', [X(1:10,:) y(1:10,:)]');
    
    fprintf('Program paused. Press enter to continue.\n');
    pause;
    
    % Scale features and set them to zero mean
    fprintf('Normalizing Features ...\n');
    
    [X mu sigma] = featureNormalize(X);
    
    % Add intercept term to X
    X = [ones(m, 1) X];
    

    特征缩放的步骤:

    • 一列对应一个特征,这一列的每行数据减去这一列的平均值。每一列执行此步骤。
    • 在减去平均值之后,得到的商除以这一列的(原来的该列数据)标准差。注意:课程中除以的是(最大值-最小值)。

    featureNormalize.m 代码如下:

    function [X_norm, mu, sigma] = featureNormalize(X)
    %FEATURENORMALIZE Normalizes the features in X 
    %   FEATURENORMALIZE(X) returns a normalized version of X where
    %   the mean value of each feature is 0 and the standard deviation
    %   is 1. This is often a good preprocessing step to do when
    %   working with learning algorithms.
    
    % You need to set these values correctly
    X_norm = X;
    mu = zeros(1, size(X, 2));
    sigma = zeros(1, size(X, 2));
    
    % ====================== YOUR CODE HERE ======================
    % Instructions: First, for each feature dimension, compute the mean
    %               of the feature and subtract it from the dataset,
    %               storing the mean value in mu. Next, compute the 
    %               standard deviation of each feature and divide
    %               each feature by it's standard deviation, storing
    %               the standard deviation in sigma. 
    %
    %               Note that X is a matrix where each column is a 
    %               feature and each row is an example. You need 
    %               to perform the normalization separately for 
    %               each feature. 
    %
    % Hint: You might find the 'mean' and 'std' functions useful.
    %       
    [m n] = size(X);
    for i=1:n
        mu(:,i) = mean(X_norm(:,i)); % 特别容易犯错:取某一列用(:, i)
        sigma(:,i) = std(X_norm(:,i));
        X_norm(:,i) = (X_norm(:,i) - mu(:,i)) ./ sigma(:,i);
    end
    % ============================================================
    
    end
    

    ex1_multi.m中Part 2: Gradient Descent

    %% ================ Part 2: Gradient Descent ================
    
    % ====================== YOUR CODE HERE ======================
    % Instructions: We have provided you with the following starter
    %               code that runs gradient descent with a particular
    %               learning rate (alpha). 
    %
    %               Your task is to first make sure that your functions - 
    %               computeCost and gradientDescent already work with 
    %               this starter code and support multiple variables.
    %
    %               After that, try running gradient descent with 
    %               different values of alpha and see which one gives
    %               you the best result.
    %
    %               Finally, you should complete the code at the end
    %               to predict the price of a 1650 sq-ft, 3 br house.
    %
    % Hint: By using the 'hold on' command, you can plot multiple
    %       graphs on the same figure.
    %
    % Hint: At prediction, make sure you do the same feature normalization.
    %
    
    fprintf('Running gradient descent ...\n');
    
    % Choose some alpha value
    alpha = 0.01; % 0.01
    num_iters = 400;
    
    % Init Theta and Run Gradient Descent 
    theta = zeros(3, 1);
    [theta, J_history] = gradientDescentMulti(X, y, theta, alpha, num_iters);
    
    % Plot the convergence graph
    figure;
    plot(1:numel(J_history), J_history, '-b', 'LineWidth', 2);
    xlabel('Number of iterations');
    ylabel('Cost J');
    
    % Display gradient descent's result
    fprintf('Theta computed from gradient descent: \n');
    fprintf(' %f \n', theta);
    fprintf('\n');
    
    % Estimate the price of a 1650 sq-ft, 3 br house
    

    多元线性回归代价函数:


    多元线性回归代价函数

    computeCostMulti.m 代码:

    function J = computeCostMulti(X, y, theta)
    %COMPUTECOSTMULTI Compute cost for linear regression with multiple variables
    %   J = COMPUTECOSTMULTI(X, y, theta) computes the cost of using theta as the
    %   parameter for linear regression to fit the data points in X and y
    
    % Initialize some useful values
    m = length(y); % number of training examples
    
    % You need to return the following variables correctly 
    J = 0;
    
    % ====================== YOUR CODE HERE ======================
    % Instructions: Compute the cost of a particular choice of theta
    %               You should set J to the cost.
    
    J = 1/(2*m) * ( X * theta - y)' * (X * theta - y);
    % =========================================================================
    
    end
    

    多元线性回归的梯度更新跟单变量的线性回归类似,gradientDescentMulti.m 如下:

    function [theta, J_history] = gradientDescentMulti(X, y, theta, alpha, num_iters)
    %GRADIENTDESCENTMULTI Performs gradient descent to learn theta
    %   theta = GRADIENTDESCENTMULTI(x, y, theta, alpha, num_iters) updates theta by
    %   taking num_iters gradient steps with learning rate alpha
    
    % Initialize some useful values
    m = length(y); % number of training examples
    J_history = zeros(num_iters, 1);
    
    for iter = 1:num_iters
    
        % ====================== YOUR CODE HERE ======================
        % Instructions: Perform a single gradient step on the parameter vector
        %               theta. 
        %
        % Hint: While debugging, it can be useful to print out the values
        %       of the cost function (computeCostMulti) and gradient here.
        %
        % X 已经添加了第一列全是1
        theta = theta - alpha/m * X' * (X * theta - y);
        
        % ============================================================
        % Save the cost J in every iteration    
        J_history(iter) = computeCostMulti(X, y, theta);
    
    end
    end
    

    ex1_multi.m中在Part2部分之后,有一个预测房价

    ex1_multi.m中在Part2部分之后预测房价,这里的特征数据需要特征缩放

    % Estimate the price of a 1650 sq-ft, 3 br house
    % ====================== YOUR CODE HERE ======================
    % Recall that the first column of X is all-ones. Thus, it does
    % not need to be normalized.
    price = 0; % You should change this
    
    price  = [1 (1650-mu(1))/sigma(1) (3-mu(1))/sigma(1)] * theta; % 假设函数h = X'* theta
    % 正则化
    
    % ============================================================
    
    fprintf(['Predicted price of a 1650 sq-ft, 3 br house ' ...
             '(using gradient descent):\n $%f\n'], price);
    
    fprintf('Program paused. Press enter to continue.\n');
    pause;
    

    ex1_multi.m中Part 3: Normal Equations

    正则化函数之后,也有一个预测,此时就不用把特征数据缩放

    % ====================== YOUR CODE HERE ======================
    % Instructions: The following code computes the closed form 
    %               solution for linear regression using the normal
    %               equations. You should complete the code in 
    %               normalEqn.m
    %
    %               After doing so, you should complete this code 
    %               to predict the price of a 1650 sq-ft, 3 br house.
    %
    
    %% Load Data
    data = csvread('ex1data2.txt');
    X = data(:, 1:2);
    y = data(:, 3);
    m = length(y);
    
    % Add intercept term to X
    X = [ones(m, 1) X];
    
    % Calculate the parameters from the normal equation
    theta = normalEqn(X, y);
    
    % Display normal equation's result
    fprintf('Theta computed from the normal equations: \n');
    fprintf(' %f \n', theta);
    fprintf('\n');
    
    
    % Estimate the price of a 1650 sq-ft, 3 br house
    % ====================== YOUR CODE HERE ======================
    price = 0; % You should change this
    price = [1 1650 3] * theta; % 假设函数h = X'* theta
    
    % ============================================================
    
    fprintf(['Predicted price of a 1650 sq-ft, 3 br house ' ...
             '(using normal equations):\n $%f\n'], price);
    

    正则化公式:


    正则化公式

    normalEqn.m 代码如下:

    function [theta] = normalEqn(X, y)
    %NORMALEQN Computes the closed-form solution to linear regression 
    %   NORMALEQN(X,y) computes the closed-form solution to linear 
    %   regression using the normal equations.
    theta = zeros(size(X, 2), 1);
    
    % ====================== YOUR CODE HERE ======================
    % Instructions: Complete the code to compute the closed form solution
    %               to linear regression and put the result in theta.
    %
    
    % ---------------------- Sample Solution ----------------------
    theta = pinv(X' * X) * X' * y;
    
    % -------------------------------------------------------------
    % ============================================================
    
    end
    

    相关文章

      网友评论

          本文标题:第2周编程作业-Coursera机器学习-吴恩达

          本文链接:https://www.haomeiwen.com/subject/oekrzqtx.html