每日英文
Don't always in the memories of the past love, the sun yesterday, how sun does not dry clothes today.
不要总在过去的回忆里缠绵,昨天的太阳,怎么都晒不干今天的衣裳。
小乐有话说
原来,这个世界上,对某个事件能产生化学反应的,除了非做不可的坚决,还有,时间。
来自:阿进的写字台
链接:cnblogs.com/homejim/p/10029796.html
责编:乐乐 | 封面来自网络01 HashMap在JAVA中的怎么工作的?
基于Hash的原理。
02 什么是哈希?
最简单形式的 hash
,是一种在对任何变量/对象的属性应用任何公式/算法后, 为其分配唯一代码的方法。
一个真正的hash
方法必须遵循下面的原则
哈希函数每次在相同或相等的对象上应用哈希函数时, 应每次返回相同的哈希码。换句话说, 两个相等的对象必须一致地生成相同的哈希码。
Java 中所有的对象都有 Hash
方法。
Java中的所有对象都继承 Object 类中定义的 hashCode() 函数的默认实现。 此函数通常通过将对象的内部地址转换为整数来生成哈希码,从而为所有不同的对象生成不同的哈希码。
03 HashMap 中的 Node 类
Map的定义是: 将键映射到值的对象。
因此,HashMap
中必须有一些机制来存储这个键值对。 答案是肯的。 HashMap
有一个内部类 Node,如下所示:
static class Node<K,V> implements Map.Entry<K,V> {
final int hash;// 记录hash值, 以便重hash时不需要再重新计算
final K key;
V value;
Node<K,V> next;
...// 其余的代码
}
当然,Node 类具有存储为属性的键和值的映射。 key 已被标记为 final,另外还有两个字段:next 和 hash。
在下面中, 我们将会理解这些属性的必须性。
04
键值对在 HashMap
中是以 Node
内部类的数组存放的,如下所示:
transient Node<K,V>[] table;
哈希码计算出来之后, 会转换成该数组的下标, 在该下标中存储对应哈希码的键值对, 在此先不详细讲解hash碰撞的情况。
该数组的长度始终是2的次幂, 通过以下的函数实现该过程
static final int tableSizeFor(int cap) { int n = cap - 1;// 如果不做该操作, 则如传入的 cap 是 2 的整数幂, 则返回值是预想的 2 倍 n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16; return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;}
其原理是将传入参数 (cap) 的低二进制全部变为1,最后加1即可获得对应的大于 cap 的 2 的次幂作为数组长度。
为什么要使用2的次幂作为数组的容量呢?
在此有涉及到 HashMap 的 hash 函数及数组下标的计算, 键(key)所计算出来的哈希码有可能是大于数组的容量的,那怎么办? 可以通过简单的求余运算来获得,但此方法效率太低。HashMap中通过以下的方法保证 hash 的值计算后都小于数组的容量。
(n - 1) & hash
这也正好解释了为什么需要2的次幂作为数组的容量。由于n是2的次幂,因此,n-1类似于一个低位掩码。通过与操作,高位的hash值全部归零,保证低位才有效 从而保证获得的值都小于n。
同时,在下一次 resize() 操作时, 重新计算每个 Node 的数组下标将会因此变得很简单,具体的后文讲解。以默认的初始值16为例
01010011 00100101 01010100 00100101& 00000000 00000000 00000000 00001111---------------------------------- 00000000 00000000 00000000 00000101 //高位全部归零,只保留末四位 // 保证了计算出的值小于数组的长度 n
但是,使用了该功能之后,由于只取了低位,因此 hash 碰撞会也会相应的变得很严重。这时候就需要使用「扰动函数」
static final int hash(Object key) { int h; return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16); }
该函数通过将哈希码的高16位的右移后与原哈希码进行异或而得到,以上面的例子为例
image此方法保证了高16位不变, 低16位根据异或后的结果改变。计算后的数组下标将会从原先的5变为0。
使用了 「扰动函数」 之后, hash 碰撞的概率将会下降。 有人专门做过类似的测试, 虽然使用该 「扰动函数」 并没有获得最大概率的避免 hash 碰撞,但考虑其计算性能和碰撞的概率, JDK 中使用了该方法,且只hash一次。
** 05 哈希碰撞及其处理 **
在理想的情况下, 哈希函数将每一个 key 都映射到一个唯一的 bucket, 然而, 这是不可能的。哪怕是设计在良好的哈希函数,也会产生哈希冲突。
前人研究了很多哈希冲突的解决方法,在维基百科中,总结出了四大类
image在 Java 的 HashMap 中, 采用了第一种 Separate chaining 方法(大多数翻译为拉链法)+链表和红黑树来解决冲突。
image在 HashMap 中, 哈希碰撞之后会通过 Node 类内部的成员变量 Node<K,V> next; 来形成一个链表(节点小于8)或红黑树(节点大于8, 在小于6时会从新转换为链表), 从而达到解决冲突的目的。
static final int TREEIFY_THRESHOLD = 8;static final int UNTREEIFY_THRESHOLD = 6;
** 06 HashMap 的初始化 **
public HashMap(); public HashMap(int initialCapacity); public HashMap(Map<? extends K, ? extends V> m); public HashMap(int initialCapacity, float loadFactor);
HashMap 中有四个构造函数, 大多是初始化容量和负载因子的操作。以 public HashMap(int initialCapacity, float loadFactor) 为例
public HashMap(int initialCapacity, float loadFactor) { // 初始化的容量不能小于0 if (initialCapacity < 0) throw new IllegalArgumentException("Illegal initial capacity: " + initialCapacity); // 初始化容量不大于最大容量 if (initialCapacity > MAXIMUM_CAPACITY) initialCapacity = MAXIMUM_CAPACITY; // 负载因子不能小于 0 if (loadFactor <= 0 || Float.isNaN(loadFactor)) throw new IllegalArgumentException("Illegal load factor: " + loadFactor); this.loadFactor = loadFactor; this.threshold = tableSizeFor(initialCapacity);}
通过该函数进行了容量和负载因子的初始化,如果是调用的其他的构造函数, 则相应的负载因子和容量会使用默认值(默认负载因子=0.75, 默认容量=16)。在此时, 还没有进行存储容器 table 的初始化, 该初始化要延迟到第一次使用时进行。
** 07 HashMap 中哈希表的初始化或动态扩容 **
所谓的哈希表, 指的就是下面这个类型为内部类Node的 table 变量。
transient Node<K,V>[] table;
作为数组, 其在初始化时就需要指定长度。在实际使用过程中, 我们存储的数量可能会大于该长度,因此 HashMap 中定义了一个阈值参数(threshold), 在存储的容量达到指定的阈值时, 需要进行扩容。
我个人认为初始化也是动态扩容的一种, 只不过其扩容是容量从 0 扩展到构造函数中的数值(默认16)。 而且不需要进行元素的重hash.
7.1 扩容发生的条件
初始化的话只要数值为空或者数组长度为 0 就会进行。 而扩容是在元素的数量大于阈值(threshold)时就会触发。
threshold = loadFactor * capacity
比如 HashMap 中默认的 loadFactor=0.75, capacity=16, 则
threshold = loadFactor * capacity = 0.75 * 16 = 12
那么在元素数量大于 12 时, 就会进行扩容。 扩容后的 capacity 和 threshold 也会随之而改变。
负载因子影响触发的阈值,因此,它的值较小的时候,HashMap 中的 hash 碰撞就很少, 此时存取的性能都很高,对应的缺点是需要较多的内存;而它的值较大时,HashMap 中的 hash 碰撞就很多,此时存取的性能相对较低,对应优点是需要较少的内存;不建议更改该默认值,如果要更改,建议进行相应的测试之后确定。
7.2 再谈容量为2的整数次幂和数组索引计算
前面说过了数组的容量为 2 的整次幂, 同时, 数组的下标通过下面的代码进行计算
index = (table.length - 1) & hash
该方法除了可以很快的计算出数组的索引之外, 在扩容之后, 进行重 hash 时也会很巧妙的就可以算出新的 hash 值。 由于数组扩容之后, 容量是现在的 2 倍, 扩容之后 n-1 的有效位会比原来多一位, 而多的这一位与原容量二进制在同一个位置。 示例
image.gif这样就可以很快的计算出新的索引啦
7.3 步骤
-
先判断是初始化还是扩容, 两者在计算newCap和newThr时会不一样
-
计算扩容后的容量,临界值。
-
将hashMap的临界值修改为扩容后的临界值
-
根据扩容后的容量新建数组,然后将hashMap的table的引用指向新数组。
-
将旧数组的元素复制到table中。在该过程中, 涉及到几种情况, 需要分开进行处理(只存有一个元素, 一般链表, 红黑树)
具体的看代码吧
final Node<K, V>[] resize() { //新建oldTab数组保存扩容前的数组table Node<K, V>[] oldTab = table; //获取原来数组的长度 int oldCap = (oldTab == null) ? 0 : oldTab.length; //原来数组扩容的临界值 int oldThr = threshold; int newCap, newThr = 0; //如果扩容前的容量 > 0 if (oldCap > 0) { //如果原来的数组长度大于最大值(2^30) if (oldCap >= MAXIMUM_CAPACITY) { //扩容临界值提高到正无穷 threshold = Integer.MAX_VALUE; //无法进行扩容,返回原来的数组 return oldTab; //如果现在容量的两倍小于MAXIMUM_CAPACITY且现在的容量大于DEFAULT_INITIAL_CAPACITY } else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY && oldCap >= DEFAULT_INITIAL_CAPACITY) //临界值变为原来的2倍 newThr = oldThr << 1; } else if (oldThr > 0) //如果旧容量 <= 0,而且旧临界值 > 0 //数组的新容量设置为老数组扩容的临界值 newCap = oldThr; else { //如果旧容量 <= 0,且旧临界值 <= 0,新容量扩充为默认初始化容量,新临界值为DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY newCap = DEFAULT_INITIAL_CAPACITY;//新数组初始容量设置为默认值 newThr = (int) (DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);//计算默认容量下的阈值 } // 计算新的resize上限 if (newThr == 0) {//在当上面的条件判断中,只有是初始化时(oldCap=0, oldThr > 0)时,newThr == 0 //ft为临时临界值,下面会确定这个临界值是否合法,如果合法,那就是真正的临界值 float ft = (float) newCap * loadFactor; //当新容量< MAXIMUM_CAPACITY且ft < (float)MAXIMUM_CAPACITY,新的临界值为ft,否则为Integer.MAX_VALUE newThr = (newCap < MAXIMUM_CAPACITY && ft < (float) MAXIMUM_CAPACITY ? (int) ft : Integer.MAX_VALUE); } //将扩容后hashMap的临界值设置为newThr threshold = newThr; //创建新的table,初始化容量为newCap @SuppressWarnings({"rawtypes", "unchecked"}) Node<K, V>[] newTab = (Node<K, V>[]) new Node[newCap]; //修改hashMap的table为新建的newTab table = newTab; //如果旧table不为空,将旧table中的元素复制到新的table中 if (oldTab != null) { //遍历旧哈希表的每个桶,将旧哈希表中的桶复制到新的哈希表中 for (int j = 0; j < oldCap; ++j) { Node<K, V> e; //如果旧桶不为null,使用e记录旧桶 if ((e = oldTab[j]) != null) { //将旧桶置为null oldTab[j] = null; //如果旧桶中只有一个node if (e.next == null) //将e也就是oldTab[j]放入newTab中e.hash & (newCap - 1)的位置 newTab[e.hash & (newCap - 1)] = e; //如果旧桶中的结构为红黑树 else if (e instanceof TreeNode) //将树中的node分离 ((TreeNode<K, V>) e).split(this, newTab, j, oldCap); else { //如果旧桶中的结构为链表,链表重排,jdk1.8做的一系列优化 Node<K, V> loHead = null, loTail = null; Node<K, V> hiHead = null, hiTail = null; Node<K, V> next; //遍历整个链表中的节点 do { next = e.next; // 原索引 if ((e.hash & oldCap) == 0) { if (loTail == null) loHead = e; else loTail.next = e; loTail = e; } else {// 原索引+oldCap if (hiTail == null) hiHead = e; else hiTail.next = e; hiTail = e; } } while ((e = next) != null); // 原索引放到bucket里 if (loTail != null) { loTail.next = null; newTab[j] = loHead; } // 原索引+oldCap放到bucket里 if (hiTail != null) { hiTail.next = null; newTab[j + oldCap] = hiHead; } } } } } return newTab;}
7.4 注意事项
虽然 HashMap
设计的非常优秀, 但是应该尽可能少的避免 resize()
, 该过程会很耗费时间。
同时, 由于 hashmap
不能自动的缩小容量 因此,如果你的 hashmap
容量很大,但执行了很多 remove
操作时,容量并不会减少。如果你觉得需要减少容量,请重新创建一个 hashmap。
** 08 HashMap.put() 函数内部是如何工作的? **
在使用多次 HashMap 之后, 大体也能说出其添加元素的原理:计算每一个key的哈希值, 通过一定的计算之后算出其在哈希表中的位置,将键值对放入该位置,如果有哈希碰撞则进行哈希碰撞处理。
而其工作时的原理如下
image源码如下:
/* @param hash 指定参数key的哈希值 * @param key 指定参数key * @param value 指定参数value * @param onlyIfAbsent 如果为true,即使指定参数key在map中已经存在,也不会替换value * @param evict 如果为false,数组table在创建模式中 * @return 如果value被替换,则返回旧的value,否则返回null。当然,可能key对应的value就是null。 */ final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) { Node<K, V>[] tab; Node<K, V> p; int n, i; //如果哈希表为空,调用resize()创建一个哈希表,并用变量n记录哈希表长度 if ((tab = table) == null || (n = tab.length) == 0) n = (tab = resize()).length; /** * 如果指定参数hash在表中没有对应的桶,即为没有碰撞 * Hash函数,(n - 1) & hash 计算key将被放置的槽位 * (n - 1) & hash 本质上是hash % n,位运算更快 */ if ((p = tab[i = (n - 1) & hash]) == null) //直接将键值对插入到map中即可 tab[i] = newNode(hash, key, value, null); else {// 桶中已经存在元素 Node<K, V> e; K k; // 比较桶中第一个元素(数组中的结点)的hash值相等,key相等 if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k)))) // 将第一个元素赋值给e,用e来记录 e = p; // 当前桶中无该键值对,且桶是红黑树结构,按照红黑树结构插入 else if (p instanceof TreeNode) e = ((TreeNode<K, V>) p).putTreeVal(this, tab, hash, key, value); // 当前桶中无该键值对,且桶是链表结构,按照链表结构插入到尾部 else { for (int binCount = 0; ; ++binCount) { // 遍历到链表尾部 if ((e = p.next) == null) { p.next = newNode(hash, key, value, null); // 检查链表长度是否达到阈值,达到将该槽位节点组织形式转为红黑树 if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st treeifyBin(tab, hash); break; } // 链表节点的<key, value>与put操作<key, value>相同时,不做重复操作,跳出循环 if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) break; p = e; } } // 找到或新建一个key和hashCode与插入元素相等的键值对,进行put操作 if (e != null) { // existing mapping for key // 记录e的value V oldValue = e.value; /** * onlyIfAbsent为false或旧值为null时,允许替换旧值 * 否则无需替换 */ if (!onlyIfAbsent || oldValue == null) e.value = value; // 访问后回调 afterNodeAccess(e); // 返回旧值 return oldValue; } } // 更新结构化修改信息 ++modCount; // 键值对数目超过阈值时,进行rehash if (++size > threshold) resize(); // 插入后回调 afterNodeInsertion(evict); return null; }
在此过程中, 会涉及到哈希碰撞的解决。
** 09 HashMap.get() 方法内部是如何工作的? **
/** * 返回指定的key映射的value,如果value为null,则返回null * get可以分为三个步骤: * 1.通过hash(Object key)方法计算key的哈希值hash。 * 2.通过getNode( int hash, Object key)方法获取node。 * 3.如果node为null,返回null,否则返回node.value。 * * @see #put(Object, Object) */ public V get(Object key) { Node<K, V> e; //根据key及其hash值查询node节点,如果存在,则返回该节点的value值 return (e = getNode(hash(key), key)) == null ? null : e.value;}
其最终是调用了 getNode
函数。 其逻辑如下
源码如下:
/** * @param hash 指定参数key的哈希值 * @param key 指定参数key * @return 返回node,如果没有则返回null */ final Node<K, V> getNode(int hash, Object key) { Node<K, V>[] tab; Node<K, V> first, e; int n; K k; //如果哈希表不为空,而且key对应的桶上不为空 if ((tab = table) != null && (n = tab.length) > 0 && (first = tab[(n - 1) & hash]) != null) { //如果桶中的第一个节点就和指定参数hash和key匹配上了 if (first.hash == hash && // always check first node ((k = first.key) == key || (key != null && key.equals(k)))) //返回桶中的第一个节点 return first; //如果桶中的第一个节点没有匹配上,而且有后续节点 if ((e = first.next) != null) { //如果当前的桶采用红黑树,则调用红黑树的get方法去获取节点 if (first instanceof TreeNode) return ((TreeNode<K, V>) first).getTreeNode(hash, key); //如果当前的桶不采用红黑树,即桶中节点结构为链式结构 do { //遍历链表,直到key匹配 if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) return e; } while ((e = e.next) != null); } } //如果哈希表为空,或者没有找到节点,返回null return null;}
推荐阅读
image这里有你需要的编程技术、心得、经验(数据结构与算法、源码分析等),这里不止限于技术!还有职场心得、生活感悟、以及面经等。关注公众号,第一时间送达!
PS:如何您想进技术群交流,关注公众号在后台回复 “加群”,或者 “学习” 即可
网友评论