美文网首页
golang 源码剖析(6): 通道

golang 源码剖析(6): 通道

作者: darcyaf | 来源:发表于2020-03-08 02:50 被阅读0次

    简介(js)

    通道(channel) 是Go实现CSP并发模型的关键, 鼓励用通信来实现数据共享。 Dont' communicate by sharing memory, share memory by communicating.
    CSP: Communicating Sequential Process

    创建

    chan.go中 hchan的结构

    type hchan struct {
        qcount   uint           // total data in the queue
        dataqsiz uint           // size of the circular queue
        buf      unsafe.Pointer // points to an array of dataqsiz elements
        elemsize uint16
        closed   uint32
        elemtype *_type // element type
        sendx    uint   // send index
        recvx    uint   // receive index
        recvq    waitq  // list of recv waiters
        sendq    waitq  // list of send waiters
    
        // lock protects all fields in hchan, as well as several
        // fields in sudogs blocked on this channel.
        //
        // Do not change another G's status while holding this lock
        // (in particular, do not ready a G), as this can deadlock
        // with stack shrinking.
        lock mutex
    }
    
    type waitq struct {
        first *sudog
        last  *sudog
    }
    

    makechan: 这里先做了一些元素大小,队列大小检查。受垃圾回收器的限制,如果包含指针类型,则缓冲槽需单独分配内存,否则可一次性分配,调整buf的指针,最后设置size等属性

    func makechan(t *chantype, size int) *hchan {
        elem := t.elem
        // compiler checks this but be safe.
        if elem.size >= 1<<16 { //限制chan的元素大小
            throw("makechan: invalid channel element type")
        }
        mem, overflow := math.MulUintptr(elem.size, uintptr(size)) //检查是否溢出
        if overflow || mem > maxAlloc-hchanSize || size < 0 {
            panic(plainError("makechan: size out of range"))
        }
        var c *hchan
        switch {
        case mem == 0:
            // Queue or element size is zero.
            c = (*hchan)(mallocgc(hchanSize, nil, true))
            // Race detector uses this location for synchronization.
            c.buf = c.raceaddr()
        case elem.ptrdata == 0:
            // Elements do not contain pointers.
            // Allocate hchan and buf in one call.
            c = (*hchan)(mallocgc(hchanSize+mem, nil, true))
            c.buf = add(unsafe.Pointer(c), hchanSize)
        default:
            // Elements contain pointers.
            c = new(hchan)
            c.buf = mallocgc(mem, elem, true)
        }
    

    收发

    这里用sudog用来保存收发队列,其中包含一个元素和g的指针,这里也实现了cache,central那一套缓存体系.
    acquireSudog获取sudog和releaseSudog释放sudog, 大致流程也是先从本地p获取,接着再去sched.sudogcache中获取.

    type sudog struct {
        g *g
        elem     unsafe.Pointer // data element (may point to stack)
    }
    type p struct {
        sudogcache []*sudog
        sudogbuf   [128]*sudog
    }
    type schedt struct {
        // Central cache of sudog structs.
        sudoglock  mutex
        sudogcache *sudog
    }
    

    发送

    在go1.13的源码中已经不判断c.dataqsiz==0, 也就是将缓冲长度的0的大于0的整合在一起了。
    如果block=false: 如果通道为nil, 则直接返回false. 对于无缓冲的情况,如果没有接收者会直接return false。 如果有缓冲但是缓冲满了也会return false。

    如果通道关闭了,会触发panic。
    尝试等待队列c.recvq中有等待者的话, 就直接将数据复制到sg.elem(如果是带缓冲的则更新缓冲的index等参数),并唤醒对应的groutine。

    如果没有等待者,并且缓冲队列能存下,则获取一个sudog之后将数据放入sendq并返回

    如果缓冲队列存不下,则调用goparkunlock然当前goroutine休眠,直到被goready唤醒,然后释放当前的sudog

    // entry point for c <- x from compiled code
    //go:nosplit
    func chansend1(c *hchan, elem unsafe.Pointer) {
        chansend(c, elem, true, getcallerpc())
    }
    func chansend(c *hchan, ep unsafe.Pointer, block bool, callerpc uintptr) {
        if c == nil {
            if !block {
                return false
            }
            gopark(nil, nil, waitReasonChanSendNilChan, traceEvGoStop, 2)
            throw("unreachable")
        }
        if !block && c.closed == 0 && ((c.dataqsiz == 0 && c.recvq.first == nil) ||
            (c.dataqsiz > 0 && c.qcount == c.dataqsiz)) {
            return false
        }
        if c.closed != 0 {
            unlock(&c.lock)
            panic(plainError("send on closed channel"))
        }
        if sg := c.recvq.dequeue(); sg != nil {
            // Found a waiting receiver. We pass the value we want to send
            // directly to the receiver, bypassing the channel buffer (if any).
            send(c, sg, ep, func() { unlock(&c.lock) }, 3)
            return true
        }
        if c.qcount < c.dataqsiz {
            // Space is available in the channel buffer. Enqueue the element to send.
            qp := chanbuf(c, c.sendx)
            if raceenabled {
                raceacquire(qp)
                racerelease(qp)
            }
            typedmemmove(c.elemtype, qp, ep)
            c.sendx++
            if c.sendx == c.dataqsiz {
                c.sendx = 0
            }
            c.qcount++
            unlock(&c.lock)
            return true
        }
    }
    

    接收

    接收类似,但是在通道关闭并且缓冲中无数据时,会返回一个默认值。
    故而在通道关闭之后还是能获取到一个值. 但是此时的返回中received变成了false

    注意: 可能是由于如果队列满的话,可以直接将那块地址的数据做swap,才将有数据分为队列满不满的两种.在看select的时候判断条件有点让人不好理解.
    在recv函数中, sg是sender,go 在这边的处理流程是sg := c.sendq.dequeue(),先从sendq中取出一个,如果sg不为nil,则调用recv(c, sg, ep, func() { unlock(&c.lock) }, 3)
    在recv()中,如果c.dataqsiz>0,也就是带缓冲chan,将调用typedmemmove(c.elemtype, ep, qp) 把queue的数据复制给ep,然后调用typedmemmove(c.elemtype, qp, sg.elem)将sg.elem(也就是pop出来的sender)的数据复制给qp

    func recv(c *hchan, sg *sudog, ep unsafe.Pointer, unlockf func(), skip int) {
        if c.dataqsiz == 0 {
        } else {
            // Queue is full. Take the item at the
            // head of the queue. Make the sender enqueue
            // its item at the tail of the queue. Since the
            // queue is full, those are both the same slot.
            qp := chanbuf(c, c.recvx)
            if raceenabled {
                raceacquire(qp)
                racerelease(qp)
                raceacquireg(sg.g, qp)
                racereleaseg(sg.g, qp)
            }
            // copy data from queue to receiver
            if ep != nil {
                typedmemmove(c.elemtype, ep, qp)
            }
            // copy data from sender to queue
            typedmemmove(c.elemtype, qp, sg.elem)
            c.recvx++
            if c.recvx == c.dataqsiz {
                c.recvx = 0
            }
            c.sendx = c.recvx // c.sendx = (c.sendx+1) % c.dataqsiz
        }
    }
    
        if c.closed != 0 && c.qcount == 0 {
            if raceenabled {
                raceacquire(c.raceaddr())
            }
            unlock(&c.lock)
            if ep != nil {
                typedmemclr(c.elemtype, ep)
            }
            return true, false
        }
    

    关闭

    • 关闭nil chan,或者重复关闭会 panic
    • 将c.closed 置为1
    • 循环pop c.recvq和c.sendq, 清空其数据,将gp.param置为nil, 最后都放入glist中
    • 轮训glist, 将所有接收和发送者都唤醒
    • 并未清理本身的buf
    func closechan(c *hchan) {
        if c == nil {
            panic(plainError("close of nil channel"))
        }
        lock(&c.lock)
        if c.closed != 0 {
            unlock(&c.lock)
            panic(plainError("close of closed channel"))
        }
        c.closed = 1
        // release all readers
        for {
            sg := c.recvq.dequeue()
            if sg == nil {
                break
            }
            if sg.elem != nil {
                typedmemclr(c.elemtype, sg.elem)
                sg.elem = nil
            }
            if sg.releasetime != 0 {
                sg.releasetime = cputicks()
            }
            gp := sg.g
            gp.param = nil
            if raceenabled {
                raceacquireg(gp, c.raceaddr())
            }
            glist.push(gp)
        }
        // release all writers (they will panic)
        for {
            sg := c.sendq.dequeue()
            if sg == nil {
                break
            }
            sg.elem = nil
            if sg.releasetime != 0 {
                sg.releasetime = cputicks()
            }
            gp := sg.g
            gp.param = nil
            if raceenabled {
                raceacquireg(gp, c.raceaddr())
            }
            glist.push(gp)
        }
        unlock(&c.lock)
        // Ready all Gs now that we've dropped the channel lock.
        for !glist.empty() {
            gp := glist.pop()
            gp.schedlink = 0
            goready(gp, 3)
        }
    }
    

    select

    在go1.13的源码中,runtime/select.go中已经没有newselect方法了,
    select的处理移到了src/cmd/compile/internal/gc/select.go中. 大概看看注释就好了,不然就涉及到编译的过程了
    在编译的时候,会遍历所有的节点,生成节点树,这是如果是OSELECT的话,则会调用walkselect,
    walkselectcases中。对Node这个对象就不研究了

    1. 如果len(cases),则会生成一个调用block()的node
    2. 如果len(cases)==1: 生成节点,mkcall("block", nil, &ln)大概就是会一直等待这个并一直堵塞,这也大概能解释当只设置一个case是个发送chan时,recv数据都能收到,如果加上default,则有的数据可能会丢失(毕竟堵着的话会跳到default或者别的)
    3. 如果len(cases)==2:会遍历所有cases.
    4. 最后给这个list加上selectgo的调用
    // The result of walkstmt MUST be assigned back to n, e.g.
    //  n.Left = walkstmt(n.Left)
    func walkstmt(n *Node) *Node {
        case OSELECT:
            walkselect(n)
    }
    func walkselect(sel *Node) {
    }
    func walkselectcases(cases *Nodes) []*Node {
        if n == 0 {
            return []*Node{mkcall("block", nil, nil)}
        }
    
        // optimization: one-case select: single op.
        // TODO(rsc): Reenable optimization once order.go can handle it.
        // golang.org/issue/7672.
        if n == 1 {}
    
        // convert case value arguments to addresses.
        // this rewrite is used by both the general code and the next optimization.
        for _, cas := range cases.Slice() {}
    
        // optimization: two-case select but one is default: single non-blocking op.
        if n == 2 && (cases.First().Left == nil || cases.Second().Left == nil) {}
        // generate sel-struct
        selv := temp(types.NewArray(scasetype(), int64(n)))
        order := temp(types.NewArray(types.Types[TUINT16], 2*int64(n)))
    
        // register cases
        for i, cas := range cases.Slice() {
            setField("kind", nodintconst(kind))
        if c != nil {
                c = convnop(c, types.Types[TUNSAFEPTR])
                setField("c", c)
            }
            if elem != nil {
                elem = convnop(elem, types.Types[TUNSAFEPTR])
                setField("elem", elem)
            }
            if instrumenting {
                r = mkcall("selectsetpc", nil, nil, bytePtrToIndex(selv, int64(i)))
                init = append(init, r)
            }
        fn := syslook("selectgo")
        r.Rlist.Set1(mkcall1(fn, fn.Type.Results(), nil, bytePtrToIndex(selv, 0), bytePtrToIndex(order, 0), nodintconst(int64(n))))
    }
    

    selectgo就是go总select语句的实现了

    1. 转类型成scases,pollorder,lockorder三个数组
    2. 将nil channel的scase统一成scase{},也就是caseNil类型方便处理
    3. 遍历case, 用fastrandn随机生成一个j,交换i,j的数据放到交换后的pollorder数组中
    4. 根据hchan的地址获得locking order(锁的顺序),使用简单堆排序来保证nlogn时间和常熟堆栈足迹
    5. 设置锁,将所有的chan锁住
    6. 开始遍历选择
      • 第一轮,按照pollorder,查找是否有已经在等待的,如果未找到,则看是否有caseDefault,有的话执行默认,然后返回. 这里对通道的检查, 如果所有的数据都堵塞(进不去,或者出不来) 则进入第二轮
      • 第二轮,将所有的chan都入队列。 caseRecv入c.recvq,caseSend入sendq,将当前G休眠等待被某一个chan唤醒(selparkcommit会将unlock所有chan)
      • 第三轮, 轮训所有的case,将原先入队的数据全部dequeue,从queue中移除,并返回casei, 也就是获取到数据的case位置,
        然后判断,cas是不是nil, 因为有可能是close(chan)事件唤醒的,这时就需要再次loop,当然如果还是判断到closed的这个case, 这里就会返回默认值然后退出。
        这里比较重要的一个是:
    1. 如果chan是nil,则分支永远走不到。 如果chan是closed,那么只要轮到(由于算法的随机,可能有别的chan先走到)肯定都能进去
    type scase struct {
        c           *hchan         // chan
        elem        unsafe.Pointer // data element
        kind        uint16
        pc          uintptr // race pc (for race detector / msan)
        releasetime int64
    }
    // selectgo implements the select statement.
    //
    // cas0 points to an array of type [ncases]scase, and order0 points to
    // an array of type [2*ncases]uint16. Both reside on the goroutine's
    // stack (regardless of any escaping in selectgo).
    func selectgo(cas0 *scase, order0 *uint16, ncases int) (int, bool) {
        // 将cas0和order0都转为数组
        cas1 := (*[1 << 16]scase)(unsafe.Pointer(cas0))
        order1 := (*[1 << 17]uint16)(unsafe.Pointer(order0))
    
            //转为slice,并拆分为pollorder和lockorder
        scases := cas1[:ncases:ncases]
        pollorder := order1[:ncases:ncases]
        lockorder := order1[ncases:][:ncases:ncases]
    
        // 遍历,将所有chan为nil的都改为scase{} 
        // Replace send/receive cases involving nil channels with
        // caseNil so logic below can assume non-nil channel.
        for i := range scases {
            cas := &scases[i]
            if cas.c == nil && cas.kind != caseDefault {
                *cas = scase{}
            }
        }
        // generate permuted order
        for i := 1; i < ncases; i++ {
            j := fastrandn(uint32(i + 1))
            pollorder[i] = pollorder[j]
            pollorder[j] = uint16(i)
        }
        // lock all the channels involved in the select
        sellock(scases, lockorder)
    loop:
        // pass 1 - look for something already waiting
        // pass 2 - enqueue on all chans
        // wait for someone to wake us up
        // pass 3 - dequeue from unsuccessful chans
        selunlock(scases, lockorder)
        goto retc
    }
    

    其他

    这里想到一个竞争的问题,也就是select阻塞时入了所有的chan列表,当多个chan都去唤醒时怎么保证这个竞争问题
    ready这个函数中如果一个协程已经不是Gwaiting状态,再次设置则会报错.
    解决的关键就在于selectDone这个参数
    dequeue函数中, sgp.g.selectDone这个参数是原子性的,在入队时将其isSelect参数设置为true.
    通过这个判断,和对selectDone改为1的过程中,如果改失败了则会跳过这个g,继续选择, 在select的处理逻辑中,当该协程唤醒后,会将select中的chan全部退回,这样就不会出现问题了。

    // Mark runnable.
    _g_ := getg()
    mp := acquirem() // disable preemption because it can be holding p in a local var
    if status&^_Gscan != _Gwaiting {
        dumpgstatus(gp)
        throw("bad g->status in ready")
    }
    
    func (q *waitq) dequeue() *sudog {
            if sgp.isSelect && !atomic.Cas(&sgp.g.selectDone, 0, 1) {
                continue
            }
    }
    

    相关文章

      网友评论

          本文标题:golang 源码剖析(6): 通道

          本文链接:https://www.haomeiwen.com/subject/oqoqdhtx.html