美文网首页
Resnet各层输出形状

Resnet各层输出形状

作者: MiracleJQ | 来源:发表于2019-06-10 10:42 被阅读0次

    定义网络

    resnet101 = torchvision.models.resnet.ResNet(torchvision.models.resnet.Bottleneck,[3, 4, 23, 3],1000)
    
    res_conv1 = torch.nn.Sequential(resnet101.conv1)
    
    res_conv1_maxpool = torch.nn.Sequential(resnet101.conv1,resnet101.maxpool)
    
    res_layer1 = torch.nn.Sequential(resnet101.conv1,resnet101.maxpool,resnet101.layer1)
    
    res_layer2 = torch.nn.Sequential(resnet101.conv1,resnet101.maxpool,resnet101.layer1,resnet101.layer2)
    
    res_layer3 = torch.nn.Sequential(resnet101.conv1,resnet101.maxpool,resnet101.layer1,resnet101.layer2,resnet101.layer3)
    
    res_layer4 = torch.nn.Sequential(resnet101.conv1,resnet101.maxpool,resnet101.layer1,resnet101.layer2,resnet101.layer3,resnet101.layer4)
    
    res_avgpool = torch.nn.Sequential(resnet101.conv1,resnet101.maxpool,resnet101.layer1,resnet101.layer2,resnet101.layer3,resnet101.layer4,resnet101.avgpool)
    

    输入图片

    img = torch.randn(size=(2,3,224,224))

    查看形状

    In [51]: img.shape
    Out[51]: torch.Size([2, 3, 224, 224])
    
    In [52]: res_conv1(img).shape
    Out[52]: torch.Size([2, 64, 112, 112])
    
    In [53]: res_conv1_maxpool(img).shape
    Out[53]: torch.Size([2, 64, 56, 56])
    
    In [54]: res_layer1(img).shape
    Out[54]: torch.Size([2, 256, 56, 56])
    
    In [55]: res_layer2(img).shape
    Out[55]: torch.Size([2, 512, 28, 28])
    
    In [56]: res_layer3(img).shape
    Out[56]: torch.Size([2, 1024, 14, 14])
    
    In [57]: res_layer4(img).shape
    Out[57]: torch.Size([2, 2048, 7, 7])
    
    In [58]: res_avgpool(img).shape
    Out[58]: torch.Size([2, 2048, 1, 1])
    
    In [59]: resnet101(img).shape
    Out[59]: torch.Size([2, 1000])
    
    

    相关文章

      网友评论

          本文标题:Resnet各层输出形状

          本文链接:https://www.haomeiwen.com/subject/orvaxctx.html