美文网首页
Binary Tree Preorder Traversal

Binary Tree Preorder Traversal

作者: 无为无悔 | 来源:发表于2016-11-26 11:52 被阅读0次
    • 描述
      Given a binary tree, return the preorder traversal of its nodes’ values. For example: Given binary tree
      {1, #, 2, 3}, return [1, 2, 3].

    Note: Recursive solution is trivial, could you do it iteratively?

    • 使用非递归进行先序遍历,要借助栈(后进先出),先把左子树依次进栈,存入到结果集,这时候结果集保留了左子树的节点值,接着弹栈,如果弹出的节点有右子树,则把右子树进栈,并保存到结果集

    • 时间复杂度O(n),空间复杂度O(n)

    • 中序遍历只需要把输出结果的位置调换一下即可

    
    
    import java.util.ArrayList;
    import java.util.List;
    import java.util.Stack;
    
    public class Solution {
        public List<Integer> inorderTraverse(TreeNode root) {
            List<Integer> result = new ArrayList<>();
            if(root == null)
                return result;
            Stack<TreeNode> stack = new Stack<>();
            TreeNode p = root;
            while(p != null || !stack.isEmpty()) {
                if(p != null) {
                    stack.push(p);
                    result.add(p.val);
                    p = p.left;
                }
                else {
                    p = stack.pop();
                    p = p.right;
                }
            }
            return result;
        }
    }
    
    
    import java.util.ArrayList;
    import java.util.List;
    import java.util.Stack;
    
    // 解法2, 深度优先搜索DFS的思想
    public class Solution1 {
        public static List<Integer> preorderTraverse(TreeNode root) {
            List<Integer> result = new ArrayList<>();
            if(root == null)
                return result;
            Stack<TreeNode> stack = new Stack<>();
            stack.push(root);
            while(!stack.isEmpty()) {
                TreeNode p = stack.pop();
                result.add(p.val);
                if(p.right != null) stack.push(p.right);
                if(p.left != null)  stack.push(p.left);
            }
            return result;
        }
    }
    
    

    相关文章

      网友评论

          本文标题:Binary Tree Preorder Traversal

          本文链接:https://www.haomeiwen.com/subject/ostgpttx.html