美文网首页
从ip_queue到nfnetlink_queue

从ip_queue到nfnetlink_queue

作者: 死海死 | 来源:发表于2016-11-07 17:23 被阅读0次

    转自: http://blog.chinaunix.net/uid-127037-id-2919500.html

    1. 前言

    在2.4内核中出现了ip_queue,用于将数据包从内核空间传递到用户空间,其不足之处是只能有一个应用程序接收内核数据。到了2.6.14以后,新增了nfnetlink_queue,理论上可最大可支持65536个应用程序接口,而且可以兼容ip_queue。

    不过从内核到用户空间的通道还是只有一个,实际上netfilter对每个协议族也只有一个队列,这里说的65536个子队列的实现就象802.1Q实现VLAN一样是在数据包中设置ID号来区分的,不同ID的包都通过相同的接口传输,只是在两端根据ID号进行了分类处理。

    2. 用户空间

    用户空间的支持库包括两个:libnfnetlink和libnetfilter_queue,后者需要前者支持,其源码可到netfilter网站上下载。

    2.1 数据结构

    2.1.1

    /*linux_nfnetlink.h */
    // 基本属性结构
    struct nfattr
    {
        // 长度
        u_int16_t nfa_len;
        // leix 
        u_int16_t nfa_type; /* we use 15 bits for the type, and the highest
                             * bit to indicate whether the payload is nested */
    } __attribute__ ((packed));
    // nf基本消息结构
    struct nfgenmsg {
        u_int8_t  nfgen_family;  /* AF_xxx */
        u_int8_t  version;  /* nfnetlink version */
        u_int16_t res_id;  /* resource id */
    } __attribute__ ((packed));
    
    /* nfnl是netfilter  netlink的缩写 */
    // nfnl回调结构
    struct nfnl_callback
    {
        int (*call)(struct sock *nl, struct sk_buff *skb, 
                struct nlmsghdr *nlh, struct nfattr *cda[], int *errp);
        u_int16_t attr_count; /* number of nfattr's */
    };
    
    // netfilter netlink子系统结构
    struct nfnetlink_subsystem
    {
        const char *name;
        __u8 subsys_id;  /* nfnetlink subsystem ID */
        __u8 cb_count;  /* number of callbacks */
        struct nfnl_callback *cb; /* callback for individual types */
    };
    

    2.1.2

    /*libnfnetlink.h */
    /* nfnl是netfilter  netlink的缩写 */
    // netfilter的netlink消息头结构
    struct nfnlhdr {
        struct nlmsghdr nlh;
        struct nfgenmsg nfmsg;
    };
    // netfilter的netlink回调函数
    struct nfnl_callback {
        int (*call)(struct nlmsghdr *nlh, struct nfattr *nfa[], void *data);
        void *data;
        u_int16_t attr_count;
    };
    

    2.1.3

    /* libnfnetlink.c */
    // netfilter netlink子系统的handle结构
    struct nfnl_subsys_handle {
        struct nfnl_handle  *nfnlh;
        u_int32_t  subscriptions;
        u_int8_t  subsys_id;
        u_int8_t  cb_count;
        struct nfnl_callback  *cb; /* array of callbacks */
    };
    #define  NFNL_MAX_SUBSYS   16 /* enough for now */
    // netfilter netlink的handle结构
    struct nfnl_handle {
        int   fd;     // socket
        struct sockaddr_nl local;  // 本地netlink socket信息
        struct sockaddr_nl peer;   // 对端的netlink socket信息
        u_int32_t  subscriptions; 
        u_int32_t  seq;    // 序号
        u_int32_t  dump;   
        struct nlmsghdr  *last_nlhdr; // 上一个消息
        struct nfnl_subsys_handle subsys[NFNL_MAX_SUBSYS+1]; // 各子系统的handle
    };
    /*linux_nfnetlink_queue.h */
    /* nfqnl是netfilter queue netlink的缩写 */
    // nfqueue_netlink消息类型
    enum nfqnl_msg_types {
        NFQNL_MSG_PACKET,  /* packet from kernel to userspace */
        NFQNL_MSG_VERDICT,  /* verdict from userspace to kernel */
        NFQNL_MSG_CONFIG,  /* connect to a particular queue */
        NFQNL_MSG_MAX
    };
    // nfqueue_netlink消息包头结构
    struct nfqnl_msg_packet_hdr {
        u_int32_t packet_id; /* unique ID of packet in queue */
        u_int16_t hw_protocol; /* hw protocol (network order) */
        u_int8_t hook;  /* netfilter hook */
    } __attribute__ ((packed));
    // nfqueue_netlink消息包头的硬件地址信息
    struct nfqnl_msg_packet_hw {
        u_int16_t hw_addrlen;
        u_int16_t _pad;
        u_int8_t hw_addr[8];
    } __attribute__ ((packed));
    // nfqueue_netlink消息数据包时间戳,都是64位的
    struct nfqnl_msg_packet_timestamp {
        aligned_u64 sec;
        aligned_u64 usec;
    } __attribute__ ((packed));
    // nfqueue_netlink属性类型
    enum nfqnl_attr_type {
        NFQA_UNSPEC,
        NFQA_PACKET_HDR,
        NFQA_VERDICT_HDR,  /* nfqnl_msg_verdict_hrd */
        NFQA_MARK,   /* u_int32_t nfmark */
        NFQA_TIMESTAMP,   /* nfqnl_msg_packet_timestamp */
        NFQA_IFINDEX_INDEV,  /* u_int32_t ifindex */
        NFQA_IFINDEX_OUTDEV,  /* u_int32_t ifindex */
        NFQA_IFINDEX_PHYSINDEV,  /* u_int32_t ifindex */
        NFQA_IFINDEX_PHYSOUTDEV, /* u_int32_t ifindex */
        NFQA_HWADDR,   /* nfqnl_msg_packet_hw */
        NFQA_PAYLOAD,   /* opaque data payload */
        __NFQA_MAX
    };
    #define NFQA_MAX (__NFQA_MAX - 1)
    // nfqueue_netlink数据包的裁定结果头结构
    struct nfqnl_msg_verdict_hdr {
        u_int32_t verdict;
        u_int32_t id;
    } __attribute__ ((packed));
    
    // nfqueue_netlink消息的配置命令类型
    enum nfqnl_msg_config_cmds {
        NFQNL_CFG_CMD_NONE,
        NFQNL_CFG_CMD_BIND,   // 和队列绑定
        NFQNL_CFG_CMD_UNBIND, // 取消和队列的绑定
        NFQNL_CFG_CMD_PF_BIND,  // 和协议族绑定
        NFQNL_CFG_CMD_PF_UNBIND, // 取消和协议族的绑定
    };
    // nfqueue_netlink消息的配置命令结构
    struct nfqnl_msg_config_cmd {
        u_int8_t command; /* nfqnl_msg_config_cmds */
        u_int8_t _pad;
        u_int16_t pf;  /* AF_xxx for PF_[UN]BIND */
    } __attribute__ ((packed));
    // nfqueue_netlink消息的配置模式类型
    enum nfqnl_config_mode {
        NFQNL_COPY_NONE,  // 不拷贝
        NFQNL_COPY_META,  // 只拷贝头部信息
        NFQNL_COPY_PACKET, // 拷贝整个数据包
    };
    // nfqueue_netlink消息的配置结构
    struct nfqnl_msg_config_params {
        u_int32_t copy_range;
        u_int8_t copy_mode; /* enum nfqnl_config_mode */
    } __attribute__ ((packed));
    
    // nfqueue_netlink属性类型
    enum nfqnl_attr_config {
        NFQA_CFG_UNSPEC,
        NFQA_CFG_CMD,   /* nfqnl_msg_config_cmd */
        NFQA_CFG_PARAMS,  /* nfqnl_msg_config_params */
        __NFQA_CFG_MAX
    };
    #define NFQA_CFG_MAX (__NFQA_CFG_MAX-1)
    

    2.1.4

    /* libnetfilter_queue.c */
    // netfilter queue的handle结构
    struct nfq_handle
    {
        struct nfnl_handle *nfnlh;  // nf netlink handle
        struct nfnl_subsys_handle *nfnlssh; // 子系统的handle
        struct nfq_q_handle *qh_list; // 
    };
    // netfilter queue的节点队列结构
    struct nfq_q_handle
    {
        // 下一个节点
        struct nfq_q_handle *next;
        // 该队列的handle
        struct nfq_handle *h;
        // id号,每个queue有唯一ID,一共可支持65536个queue
        u_int16_t id;
        // typedef int  nfq_callback(struct nfq_q_handle *gh, struct nfgenmsg *nfmsg,
        //         struct nfq_data *nfad, void *data);
        // nf queue的回调函数
        nfq_callback *cb;
        // nf queue的回调函数输入数据指针
        void *data;
    };
    struct nfq_data {
        struct nfattr **data;
    };
    

    2.2 接口函数声明

    2.2.1 libnfnetlink

    实际上这些函数和宏都是被netfilter_queue的接口函数所包装,一般用户应用程序中不用直接调用这些函数或宏。

    /* libnfnetlink.h */
    extern int nfnl_fd(struct nfnl_handle *h);
    /* get a new library handle */
    extern struct nfnl_handle *nfnl_open(void);
    extern int nfnl_close(struct nfnl_handle *);
    extern struct nfnl_subsys_handle *nfnl_subsys_open(struct nfnl_handle *, 
            u_int8_t, u_int8_t, 
            unsigned int);
    extern void nfnl_subsys_close(struct nfnl_subsys_handle *);
    /* sending of data */
    extern int nfnl_send(struct nfnl_handle *, struct nlmsghdr *);
    extern int nfnl_sendmsg(const struct nfnl_handle *, const struct msghdr *msg,
            unsigned int flags);
    extern int nfnl_sendiov(const struct nfnl_handle *nfnlh,
            const struct iovec *iov, unsigned int num,
            unsigned int flags);
    extern void nfnl_fill_hdr(struct nfnl_subsys_handle *, struct nlmsghdr *,
            unsigned int, u_int8_t, u_int16_t, u_int16_t,
            u_int16_t);
    extern int nfnl_talk(struct nfnl_handle *, struct nlmsghdr *, pid_t,
            unsigned, struct nlmsghdr *,
            int (*)(struct sockaddr_nl *, struct nlmsghdr *, void *),
            void *);
    /* simple challenge/response */
    extern int nfnl_listen(struct nfnl_handle *,
            int (*)(struct sockaddr_nl *, struct nlmsghdr *, void *),
            void *);
    /* receiving */
    extern ssize_t nfnl_recv(const struct nfnl_handle *h, unsigned char *buf, size_t len);
    extern int nfnl_callback_register(struct nfnl_subsys_handle *,
            u_int8_t type, struct nfnl_callback *cb);
    extern int nfnl_callback_unregister(struct nfnl_subsys_handle *, u_int8_t type);
    extern int nfnl_handle_packet(struct nfnl_handle *, char *buf, int len);
    /* parsing */
    extern struct nfattr *nfnl_parse_hdr(const struct nfnl_handle *nfnlh, 
            const struct nlmsghdr *nlh,
            struct nfgenmsg **genmsg);
    extern int nfnl_check_attributes(const struct nfnl_handle *nfnlh,
            const struct nlmsghdr *nlh,
            struct nfattr *tb[]);
    extern struct nlmsghdr *nfnl_get_msg_first(struct nfnl_handle *h,
            const unsigned char *buf,
            size_t len);
    extern struct nlmsghdr *nfnl_get_msg_next(struct nfnl_handle *h,
            const unsigned char *buf,
            size_t len);
    #define nfnl_attr_present(tb, attr)   \
        (tb[attr-1])
    #define nfnl_get_data(tb, attr, type)   \
        ({ type __ret = 0;    \
         if (tb[attr-1])    \
         __ret = *(type *)NFA_DATA(tb[attr-1]);  \
         __ret;      \
         })
    #define nfnl_get_pointer_to_data(tb, attr, type) \
        ({ type *__ret = NULL;   \
         if (tb[attr-1])    \
         __ret = NFA_DATA(tb[attr-1]);   \
         __ret;      \
         })
    /* nfnl attribute handling functions */
    extern int nfnl_addattr_l(struct nlmsghdr *, int, int, void *, int);
    extern int nfnl_addattr16(struct nlmsghdr *, int, int, u_int16_t);
    extern int nfnl_addattr32(struct nlmsghdr *, int, int, u_int32_t);
    extern int nfnl_nfa_addattr_l(struct nfattr *, int, int, void *, int);
    extern int nfnl_nfa_addattr16(struct nfattr *, int, int, u_int16_t);
    extern int nfnl_nfa_addattr32(struct nfattr *, int, int, u_int32_t);
    extern int nfnl_parse_attr(struct nfattr **, int, struct nfattr *, int);
    #define nfnl_parse_nested(tb, max, nfa) \
        nfnl_parse_attr((tb), (max), NFA_DATA((nfa)), NFA_PAYLOAD((nfa)))
    #define nfnl_nest(nlh, bufsize, type)     \
        ({ struct nfattr *__start = NLMSG_TAIL(nlh);  \
         nfnl_addattr_l(nlh, bufsize, (NFNL_NFA_NEST | type), NULL, 0);  \
         __start; })
    #define nfnl_nest_end(nlh, tail)     \
        ({ (tail)->nfa_len = (void *) NLMSG_TAIL(nlh) - (void *) tail; })
    extern void nfnl_build_nfa_iovec(struct iovec *iov, struct nfattr *nfa, 
            u_int16_t type, u_int32_t len,
            unsigned char *val);
    extern unsigned int nfnl_rcvbufsiz(struct nfnl_handle *h, unsigned int size);
    
    extern void nfnl_dump_packet(struct nlmsghdr *, int, char *);
    

    2.2.2 libnetfilter_queue

    /* libnetfilter_queue.h */
    // 打开一个nfqueue的handle,返回NULL表示失败
    extern struct nfq_handle *nfq_open(void);
    // 打开nf netlink handle对应的nfqueue
    extern struct nfq_handle *nfq_open_nfnl(struct nfnl_handle *nfnlh);
    // 关闭nfqueue
    extern int nfq_close(struct nfq_handle *h);
    // 对nfqueue绑定协议族
    extern int nfq_bind_pf(struct nfq_handle *h, u_int16_t pf);
    // 对nfqueue取消协议族绑定
    extern int nfq_unbind_pf(struct nfq_handle *h, u_int16_t pf);
    // 建立具体的queue的handle,由num指定queue的序号, 返回NULL失败
    extern struct nfq_q_handle *nfq_create_queue(struct nfq_handle *h,
            u_int16_t num,
            nfq_callback *cb,
            void *data);
    // 释放队列
    extern int nfq_destroy_queue(struct nfq_q_handle *qh);
    // 处理队列的数据包
    extern int nfq_handle_packet(struct nfq_handle *h, char *buf, int len);
    
    // 设置queue handle的数据拷贝模式
    extern int nfq_set_mode(struct nfq_q_handle *qh,
            u_int8_t mode, unsigned int len);
    // 设置数据包的判定结果, id用于指定具体的包, buf和data_len用于传递修改后的数据
    extern int nfq_set_verdict(struct nfq_q_handle *qh,
            u_int32_t id,
            u_int32_t verdict,
            u_int32_t data_len,
            unsigned char *buf);
    // 设置数据包的mark值
    extern int nfq_set_verdict_mark(struct nfq_q_handle *qh, 
            u_int32_t id,
            u_int32_t verdict, 
            u_int32_t mark,
            u_int32_t datalen,
            unsigned char *buf);
    /* message parsing function */
    // 从缓冲区原始数据中返回消息头结构
    extern struct nfqnl_msg_packet_hdr *
    nfq_get_msg_packet_hdr(struct nfq_data *nfad);
    // 获取数据的mark信息
    extern u_int32_t nfq_get_nfmark(struct nfq_data *nfad);
    extern int nfq_get_timestamp(struct nfq_data *nfad, struct timeval *tv);
    /* return 0 if not set */
    // 返回数据包进入网卡的索引号
    extern u_int32_t nfq_get_indev(struct nfq_data *nfad);
    // 返回数据包进入的物理网卡的索引号
    extern u_int32_t nfq_get_physindev(struct nfq_data *nfad);
    // 返回数据包发出网卡的索引号
    extern u_int32_t nfq_get_outdev(struct nfq_data *nfad);
    // 返回数据包发出的物理网卡的索引号
    extern u_int32_t nfq_get_physoutdev(struct nfq_data *nfad);
    // 返回数据包硬件地址
    extern struct nfqnl_msg_packet_hw *nfq_get_packet_hw(struct nfq_data *nfad);
    /* return -1 if problem, length otherwise */
    // 获取数据包中载荷地址
    extern int nfq_get_payload(struct nfq_data *nfad, char **data);
    

    2.3 netfilter queue接口函数的实现

    /* libnetfilter_queue.c */
    // 删除一个queue节点
    // 各个nfq_q_handle结构都是其nfq_handle中的qh_list链表中的一个节点
    // 所以删除节点就是将其从链表中移出即可,该函数不进行内存释放操作
    // 结构可表示如下:
    //   nfq_handle -> qh_list
    //       ^            |
    //       |            V
    //       |         nfq_q_handle -> nfq_q_handle -> ...
    //       |              |               |
    //       |______________|_______________|_________________
    
    static void del_qh(struct nfq_q_handle *qh)
    {
        struct nfq_q_handle *cur_qh, *prev_qh = NULL;
        for (cur_qh = qh->h->qh_list; cur_qh; cur_qh = cur_qh->next) {
            if (cur_qh == qh) {
                if (prev_qh)
                    prev_qh->next = qh->next;
                else
                    qh->h->qh_list = qh->next;
                return;
            }
            prev_qh = cur_qh;
        }
    }
    // 把一个nfq_q_handle结构添加到链表中
    static void add_qh(struct nfq_q_handle *qh)
    {
        qh->next = qh->h->qh_list;
        qh->h->qh_list = qh;
    }
    // 根据ID号找nfq_q_handle节点
    static struct nfq_q_handle *find_qh(struct nfq_handle *h, u_int16_t id)
    {
        struct nfq_q_handle *qh;
        for (qh = h->qh_list; qh; qh = qh->next) {
            if (qh->id == id)
                return qh;
        }
        return NULL;
    }
    /* build a NFQNL_MSG_CONFIG message */
    // 向netlink socket发送配置信息,该函数是static的,外部函数不可见
        static int
    __build_send_cfg_msg(struct nfq_handle *h, u_int8_t command,
            u_int16_t queuenum, u_int16_t pf)
    {
        char buf[NFNL_HEADER_LEN
            +NFA_LENGTH(sizeof(struct nfqnl_msg_config_cmd))];
        struct nfqnl_msg_config_cmd cmd;
        struct nlmsghdr *nmh = (struct nlmsghdr *) buf;
        nfnl_fill_hdr(h->nfnlssh, nmh, 0, AF_UNSPEC, queuenum,
                NFQNL_MSG_CONFIG, NLM_F_REQUEST|NLM_F_ACK);
        cmd.command = command;
        cmd.pf = htons(pf);
        nfnl_addattr_l(nmh, sizeof(buf), NFQA_CFG_CMD, &cmd, sizeof(cmd));
        return nfnl_talk(h->nfnlh, nmh, 0, 0, NULL, NULL, NULL);
    }
    // 接收netlink数据包,该函数是也static的,外部函数不可见
    static int __nfq_rcv_pkt(struct nlmsghdr *nlh, struct nfattr *nfa[],
            void *data)
    {
        struct nfgenmsg *nfmsg = NLMSG_DATA(nlh);
        struct nfq_handle *h = data;
        u_int16_t queue_num = ntohs(nfmsg->res_id);
        // 根据ID找到nfq_q_handle
        struct nfq_q_handle *qh = find_qh(h, queue_num);
        struct nfq_data nfqa;
        if (!qh)
            return -ENODEV;
        if (!qh->cb)
            return -ENODEV;
        nfqa.data = nfa;
        // 调用nfq_q_handle的回调函数
        return qh->cb(qh, nfmsg, &nfqa, qh->data);
    }
    // 固定的回调结构
    static struct nfnl_callback pkt_cb = {
        .call  = &__nfq_rcv_pkt,
        .attr_count = NFQA_MAX,
    };
    /* public interface */
    // 返回nfq_handle的netlink handle
    struct nfnl_handle *nfq_nfnlh(struct nfq_handle *h)
    {
        return h->nfnlh;
    }
    
    // 返回nfq_handle的netlink handle的netlink套接字
    int nfq_fd(struct nfq_handle *h)
    {
        return nfnl_fd(nfq_nfnlh(h));
    }
    struct nfq_handle *nfq_open(void)
    {
        // 先打开netlink handle
        struct nfnl_handle *nfnlh = nfnl_open();
        struct nfq_handle *qh;
        if (!nfnlh)
            return NULL;
        // 再调用nfq_open_nfnl()打开nf queue handle
        qh = nfq_open_nfnl(nfnlh);
        if (!qh)
            nfnl_close(nfnlh);
        return qh;
    }
    // 已存在netlink handle时打开nfq_handle
    struct nfq_handle *nfq_open_nfnl(struct nfnl_handle *nfnlh)
    {
        struct nfq_handle *h;
        int err;
        // 分配内存
        h = malloc(sizeof(*h));
        if (!h)
            return NULL;
        memset(h, 0, sizeof(*h));
        // 把nfq_handle和netlink handle连接起来
        h->nfnlh = nfnlh;
        // 打开NFNL_SUBSYS_QUEUE类型的子系统
        h->nfnlssh = nfnl_subsys_open(h->nfnlh, NFNL_SUBSYS_QUEUE, 
                NFQNL_MSG_MAX, 0);
        if (!h->nfnlssh) {
            /* FIXME: nfq_errno */
            goto out_free;
        }
        // 登记回调处理函数
        pkt_cb.data = h;
        err = nfnl_callback_register(h->nfnlssh, NFQNL_MSG_PACKET, &pkt_cb);
        if (err < 0) {
            nfq_errno = err;
            goto out_close;
        }
        return h;
    out_close:
        nfnl_subsys_close(h->nfnlssh);
    out_free:
        free(h);
        return NULL;
    }
    int nfq_close(struct nfq_handle *h)
    {
        int ret;
        // 关闭子系统 
        nfnl_subsys_close(h->nfnlssh);
        // 关闭netlink handle
        ret = nfnl_close(h->nfnlh);
        if (ret == 0)
            free(h);
        return ret;
    }
    /* bind nf_queue from a specific protocol family */
    // 以下函数均是调用__build_send_cfg_msg()函数向内核发送消息命令
    int nfq_bind_pf(struct nfq_handle *h, u_int16_t pf)
    {
        return __build_send_cfg_msg(h, NFQNL_CFG_CMD_PF_BIND, 0, pf);
    }
    /* unbind nf_queue from a specific protocol family */
    int nfq_unbind_pf(struct nfq_handle *h, u_int16_t pf)
    {
        return __build_send_cfg_msg(h, NFQNL_CFG_CMD_PF_UNBIND, 0, pf);
    }
    /* bind this socket to a specific queue number */
    // 生成一个号码为num的队列
    struct nfq_q_handle *nfq_create_queue(struct nfq_handle *h, 
            u_int16_t num,
            nfq_callback *cb,
            void *data)
    {
        int ret;
        struct nfq_q_handle *qh;
        if (find_qh(h, num))
            return NULL;
        // 分配queue节点空间, 设置相应参数
        qh = malloc(sizeof(*qh));
        memset(qh, 0, sizeof(*qh));
        qh->h = h;
        qh->id = num;
        qh->cb = cb;
        qh->data = data;
    
        ret = __build_send_cfg_msg(h, NFQNL_CFG_CMD_BIND, num, 0);
        if (ret < 0) {
            nfq_errno = ret;
            free(qh);
            return NULL;
        }
        // 添加到队列中
        add_qh(qh);
        return qh;
    }
    /* unbind this socket from a specific queue number */
    // 释放队列
    int nfq_destroy_queue(struct nfq_q_handle *qh)
    {
        int ret = __build_send_cfg_msg(qh->h, NFQNL_CFG_CMD_UNBIND, qh->id, 0);
        if (ret == 0) {
            del_qh(qh);
            free(qh);
        }
        return ret;
    }
    int nfq_handle_packet(struct nfq_handle *h, char *buf, int len)
    {
        // 实际就是netlink处理包
        return nfnl_handle_packet(h->nfnlh, buf, len);
    }
    int nfq_set_mode(struct nfq_q_handle *qh,
            u_int8_t mode, u_int32_t range)
    {
        char buf[NFNL_HEADER_LEN
            +NFA_LENGTH(sizeof(struct nfqnl_msg_config_params))];
        struct nfqnl_msg_config_params params;
        struct nlmsghdr *nmh = (struct nlmsghdr *) buf;
        nfnl_fill_hdr(qh->h->nfnlssh, nmh, 0, AF_UNSPEC, qh->id,
                NFQNL_MSG_CONFIG, NLM_F_REQUEST|NLM_F_ACK);
        params.copy_range = htonl(range);
        params.copy_mode = mode;
        nfnl_addattr_l(nmh, sizeof(buf), NFQA_CFG_PARAMS, ¶ms,
                sizeof(params));
        return nfnl_talk(qh->h->nfnlh, nmh, 0, 0, NULL, NULL, NULL);
    }
    static int __set_verdict(struct nfq_q_handle *qh, u_int32_t id,
            u_int32_t verdict, u_int32_t mark, int set_mark,
            u_int32_t data_len, unsigned char *data)
    {
        struct nfqnl_msg_verdict_hdr vh;
        char buf[NFNL_HEADER_LEN
            +NFA_LENGTH(sizeof(mark))
            +NFA_LENGTH(sizeof(vh))];
        struct nlmsghdr *nmh = (struct nlmsghdr *) buf;
        struct iovec iov[3];
        int nvecs;
        /* This must be declared here (and not inside the data
         * handling block) because the iovec points to this. */
        struct nfattr data_attr;
        memset(iov, 0, sizeof(iov));
        // 设置裁定结果头
        vh.verdict = htonl(verdict);
        vh.id = htonl(id);
        nfnl_fill_hdr(qh->h->nfnlssh, nmh, 0, AF_UNSPEC, qh->id,
                NFQNL_MSG_VERDICT, NLM_F_REQUEST);
        /* add verdict header */
        nfnl_addattr_l(nmh, sizeof(buf), NFQA_VERDICT_HDR, &vh, sizeof(vh));
        // 设置数据包的mark值
        if (set_mark)
            nfnl_addattr32(nmh, sizeof(buf), NFQA_MARK, mark);
        iov[0].iov_base = nmh;
        iov[0].iov_len = NLMSG_TAIL(nmh) - (void *)nmh;
        nvecs = 1;
        if (data_len) {
            // 如果数据进行修改要传回内核,相应将数据添加到要发送到内核的数据向量中
            nfnl_build_nfa_iovec(&iov[1], &data_attr, NFQA_PAYLOAD,
                    data_len, data);
            nvecs += 2;
            /* Add the length of the appended data to the message
             * header.  The size of the attribute is given in the
             * nfa_len field and is set in the nfnl_build_nfa_iovec()
             * function. */
            nmh->nlmsg_len += data_attr.nfa_len;
        }
        // 向内核发送数据向量
        return nfnl_sendiov(qh->h->nfnlh, iov, nvecs, 0);
    }
    int nfq_set_verdict(struct nfq_q_handle *qh, u_int32_t id,
            u_int32_t verdict, u_int32_t data_len, 
            unsigned char *buf)
    {
        return __set_verdict(qh, id, verdict, 0, 0, data_len, buf);
    } 
    int nfq_set_verdict_mark(struct nfq_q_handle *qh, u_int32_t id,
            u_int32_t verdict, u_int32_t mark,
            u_int32_t datalen, unsigned char *buf)
    {
        return __set_verdict(qh, id, verdict, mark, 1, datalen, buf);
    }
    /*************************************************************
     * Message parsing functions 
     *************************************************************/
    // 以下函数均是调用nfnl_get_pointer_to_data()和nfnl_get_data()函数获取
    // 指定数据
    struct nfqnl_msg_packet_hdr *nfq_get_msg_packet_hdr(struct nfq_data *nfad)
    {
        return nfnl_get_pointer_to_data(nfad->data, NFQA_PACKET_HDR,
                struct nfqnl_msg_packet_hdr);
    }
    uint32_t nfq_get_nfmark(struct nfq_data *nfad)
    {
        return ntohl(nfnl_get_data(nfad->data, NFQA_MARK, u_int32_t));
    }
    int nfq_get_timestamp(struct nfq_data *nfad, struct timeval *tv)
    {
        struct nfqnl_msg_packet_timestamp *qpt;
        qpt = nfnl_get_pointer_to_data(nfad->data, NFQA_TIMESTAMP,
                struct nfqnl_msg_packet_timestamp);
        if (!qpt)
            return -1;
        tv->tv_sec = __be64_to_cpu(qpt->sec);
        tv->tv_usec = __be64_to_cpu(qpt->usec);
        return 0;
    }
    /* all nfq_get_*dev() functions return 0 if not set, since linux only allows
     * ifindex >= 1, see net/core/dev.c:2600  (in 2.6.13.1) */
    u_int32_t nfq_get_indev(struct nfq_data *nfad)
    {
        return ntohl(nfnl_get_data(nfad->data, NFQA_IFINDEX_INDEV, u_int32_t));
    }
    u_int32_t nfq_get_physindev(struct nfq_data *nfad)
    {
        return ntohl(nfnl_get_data(nfad->data, NFQA_IFINDEX_PHYSINDEV, u_int32_t));
    }
    u_int32_t nfq_get_outdev(struct nfq_data *nfad)
    {
        return ntohl(nfnl_get_data(nfad->data, NFQA_IFINDEX_OUTDEV, u_int32_t));
    }
    u_int32_t nfq_get_physoutdev(struct nfq_data *nfad)
    {
        return ntohl(nfnl_get_data(nfad->data, NFQA_IFINDEX_PHYSOUTDEV, u_int32_t));
    }
    struct nfqnl_msg_packet_hw *nfq_get_packet_hw(struct nfq_data *nfad)
    {
        return nfnl_get_pointer_to_data(nfad->data, NFQA_HWADDR,
                struct nfqnl_msg_packet_hw);
    }
    int nfq_get_payload(struct nfq_data *nfad, char **data)
    {
        *data = nfnl_get_pointer_to_data(nfad->data, NFQA_PAYLOAD, char);
        if (*data)
            return NFA_PAYLOAD(nfad->data[NFQA_PAYLOAD-1]);
        return -1;
    }
    

    2.4 程序实例

    /* nfqnl_test.c */
    
    #include 
    #include 
    #include 
    #include 
    #include         /* for NF_ACCEPT */
    #include
    /* returns packet id */
    // 对数据包的处理函数, 本示例仅用于打印数据包的信息
    static u_int32_t print_pkt (struct nfq_data *tb)
    {
        int id = 0;
        struct nfqnl_msg_packet_hdr *ph;
        u_int32_t mark,ifi;
        int ret;
        char *data;
        // 提取数据包头信息,包括id,协议和hook点信息
        ph = nfq_get_msg_packet_hdr(tb);
        if (ph){
            id = ntohl(ph->packet_id);
            printf("hw_protocol=0x%04x hook=%u id=%u ",
                    ntohs(ph->hw_protocol), ph->hook, id);
        }
        // 获取数据包的mark值, 也就是内核skb的nfmark值
        mark = nfq_get_nfmark(tb);
        if (mark)
            printf("mark=%u ", mark);
        // 获取数据包的进入网卡的索引号
        ifi = nfq_get_indev(tb);
        if (ifi)
            printf("indev=%u ", ifi);
        // 获取数据包的发出网卡的索引号
        ifi = nfq_get_outdev(tb);
        if (ifi)
            printf("outdev=%u ", ifi);
        // 获取数据包载荷,data指针指向载荷,从实际的IP头开始
        ret = nfq_get_payload(tb, &data);
        if (ret >= 0)
            printf("payload_len=%d ", ret);
        fputc('\n', stdout);
    
        return id;
    }   
    
    // 回调函数定义, 基本结构是先处理包,然后返回裁定
    static int cb(struct nfq_q_handle *qh, struct nfgenmsg *nfmsg,
            struct nfq_data *nfa, void *data)
    {       
        // 数据包处理
        u_int32_t id = print_pkt(nfa);
        printf("entering callback\n");
        // 设置裁定
        return nfq_set_verdict(qh, id, NF_ACCEPT, 0, NULL);
    }
    
    int main(int argc, char **argv)
    {
        struct nfq_handle *h;
        struct nfq_q_handle *qh;
        struct nfnl_handle *nh;
        int fd;
        int rv;
        char buf[4096];
        printf("opening library handle\n");
        // 打开nfq_handle
        h = nfq_open();
        if (!h) {
            fprintf(stderr, "error during nfq_open()\n");
            exit(1);
        }
        printf("unbinding existing nf_queue handler for AF_INET (if any)\n");
        // 先解开和AF_INET的绑定
        if (nfq_unbind_pf(h, AF_INET) < 0) {
            fprintf(stderr, "error during nfq_unbind_pf()\n");
            exit(1);
        }
        printf("binding nfnetlink_queue as nf_queue handler for AF_INET\n");
        // 绑定到AF_INET
        if (nfq_bind_pf(h, AF_INET) < 0) {
            fprintf(stderr, "error during nfq_bind_pf()\n");
            exit(1);
        }
        printf("binding this socket to queue '0'\n");
        // 建立nfq_q_handle, 号码是0, 回调函数是cb
        // 可建立多个queue,用不同的号码区分即可
        qh = nfq_create_queue(h,  0, &cb, NULL);
        if (!qh) {
            fprintf(stderr, "error during nfq_create_queue()\n");
            exit(1);
        }
    
        printf("setting copy_packet mode\n");
        // 设置数据拷贝模式, 全包拷贝
        if (nfq_set_mode(qh, NFQNL_COPY_PACKET, 0xffff) < 0) {
            fprintf(stderr, "can't set packet_copy mode\n");
            exit(1);
        } 
    
        nh = nfq_nfnlh(h);
        fd = nfnl_fd(nh);
        // 从netlink套接字接收数据
        while ((rv = recv(fd, buf, sizeof(buf), 0)) && rv >= 0) {
            printf("pkt received\n");
            // 处理数据,最终会调用到相应的回调函数
            nfq_handle_packet(h, buf, rv); 
        }   
    
        printf("unbinding from queue 0\n");
        // 释放队列
        nfq_destroy_queue(qh);
    
    #ifdef INSANE
        /* normally, applications SHOULD NOT issue this command, since
         * it detaches other programs/sockets from AF_INET, too ! */
        printf("unbinding from AF_INET\n");
        nfq_unbind_pf(h, AF_INET);
    #endif
    
        printf("closing library handle\n");
        // 关闭nfq_handle
        nfq_close(h);
        exit(0);
    }
    

    2.5 包装libipq

    可用netlink_queue包装libipq,ipq就相当于是号码为0的一个nfqueue而已:

    /* libipq_compat.c */
    struct ipq_handle *ipq_create_handle(u_int32_t flags, u_int32_t protocol)
    {
        int status;
        struct ipq_handle *h;
        h = (struct ipq_handle *)malloc(sizeof(struct ipq_handle));
        if (h == NULL) {
            ipq_errno = IPQ_ERR_HANDLE;
            return NULL;
        }
    
        memset(h, 0, sizeof(struct ipq_handle));
        // 打开ipq的nfqueue handle
        h->nfqnlh = nfq_open();
        if (!h->nfqnlh) {
            ipq_errno = IPQ_ERR_SOCKET;
            goto err_free;
        }
        // 绑定到PF_INET或PF_INET6 
        if (protocol == PF_INET)
            status = nfq_bind_pf(h->nfqnlh, PF_INET);
        else if (protocol == PF_INET6)
            status = nfq_bind_pf(h->nfqnlh, PF_INET6);
        else {
            ipq_errno = IPQ_ERR_PROTOCOL;
            goto err_close;
        }
        h->family = protocol;
        if (status < 0) {
            ipq_errno = IPQ_ERR_BIND;
            goto err_close;
        }
        // 按号码0建立queue,无回调函数,数据包由ipq直接读后处理
        h->qh = nfq_create_queue(h->nfqnlh, 0, NULL, NULL);
        if (!h->qh) {
            ipq_errno = IPQ_ERR_BIND;
            goto err_close;
        }
        return h;
    err_close:
        nfq_close(h->nfqnlh);
    err_free:
        free(h);
        return NULL;
    }
    /*
     * No error condition is checked here at this stage, but it may happen
     * if/when reliable messaging is implemented.
     */
    int ipq_destroy_handle(struct ipq_handle *h)
    {
        if (h) {
            nfq_close(h->nfqnlh);
            free(h);
        }
        return 0;
    }
    int ipq_set_mode(const struct ipq_handle *h,
            u_int8_t mode, size_t range)
    {
        return nfq_set_mode(h->qh, mode, range);
    }
    /*
     * timeout is in microseconds (1 second is 1000000 (1 million) microseconds)
     *
     */
    // ipq_read包装得有点疑问,实际没进行接收操作,需要显式的recv接收数据包
    // 现在的ipq_read只是对接收的数据进行解析
    ssize_t ipq_read(const struct ipq_handle *h,
            unsigned char *buf, size_t len, int timeout)
    {
        struct nfattr *tb[NFQA_MAX];
        struct nlmsghdr *nlh = (struct nlmsghdr *)buf;
        struct nfgenmsg *msg = NULL;
        struct nfattr *nfa;
        //return ipq_netlink_recvfrom(h, buf, len, timeout);
    
        /* This really sucks.  We have to copy the whole packet
         * in order to build a data structure that is compatible to
         * the old ipq interface... */
        nfa = nfnl_parse_hdr(nfq_nfnlh(h->nfqnlh), nlh, &msg);
        if (!msg || !nfa)
            return 0;
        if (msg->nfgen_family != h->family)
            return 0;
    
        nfnl_parse_attr(tb, NFQA_MAX, nfa, 0xffff);
    
        return 0;
    }
    int ipq_message_type(const unsigned char *buf)
    {
        return ((struct nlmsghdr*)buf)->nlmsg_type;
    }
    int ipq_get_msgerr(const unsigned char *buf)
    {
        struct nlmsghdr *h = (struct nlmsghdr *)buf;
        struct nlmsgerr *err = (struct nlmsgerr*)NLMSG_DATA(h);
        return -err->error;
    }
    ipq_packet_msg_t *ipq_get_packet(const unsigned char *buf)
    {
        return NLMSG_DATA((struct nlmsghdr *)(buf));
    }
    int ipq_set_verdict(const struct ipq_handle *h,
            ipq_id_t id,
            unsigned int verdict,
            size_t data_len,
            unsigned char *buf)
    {
        return nfq_set_verdict(h->qh, id, verdict, data_len, buf);
    }
    /* Not implemented yet */
    int ipq_ctl(const struct ipq_handle *h, int request, ...)
    {
        return 1;
    }
    char *ipq_errstr(void)
    {
        return ipq_strerror(ipq_errno);
    }
    void ipq_perror(const char *s)
    {
        if (s)
            fputs(s, stderr);
        else
            fputs("ERROR", stderr);
        if (ipq_errno)
            fprintf(stderr, ": %s", ipq_errstr());
        if (errno)
            fprintf(stderr, ": %s", strerror(errno));
        fputc('\n', stderr);
    }
    

    3. 内核空间

    内核版本2.6.17.11。
    内核空间的代码程序包括net/netfilter/nfnetlink_queue.c和xt_NFQUEUE.c,前者是具体实现,后者
    是iptables的一个目标,用来指定数据属于哪个队列。

    3.1 数据结构

    /* include/linux/netfilter/nfnetlink_queue.h */
    
    // nfqueue netlink消息类型
    enum nfqnl_msg_types {
        NFQNL_MSG_PACKET,  /* packet from kernel to userspace */
        NFQNL_MSG_VERDICT,  /* verdict from userspace to kernel */
        NFQNL_MSG_CONFIG,  /* connect to a particular queue */
        NFQNL_MSG_MAX
    };
    
    // nfqueue netlink消息数据包头
    struct nfqnl_msg_packet_hdr {
        u_int32_t packet_id; /* unique ID of packet in queue */
        u_int16_t hw_protocol; /* hw protocol (network order) */
        u_int8_t hook;  /* netfilter hook */
    } __attribute__ ((packed));
    
    // nfqueue netlink消息数据包头硬件部分,MAC地址
    struct nfqnl_msg_packet_hw {
        u_int16_t hw_addrlen;
        u_int16_t _pad;
        u_int8_t hw_addr[8];
    } __attribute__ ((packed));
    
    // nfqueue netlink消息数据包64位时间戳
    struct nfqnl_msg_packet_timestamp {
        aligned_u64 sec;
        aligned_u64 usec;
    } __attribute__ ((packed));
    
    // nfqueue netlink属性
    enum nfqnl_attr_type {类型
        NFQA_UNSPEC,
        NFQA_PACKET_HDR,
        NFQA_VERDICT_HDR,  /* nfqnl_msg_verdict_hrd */
        NFQA_MARK,   /* u_int32_t nfmark */
        NFQA_TIMESTAMP,   /* nfqnl_msg_packet_timestamp */
        NFQA_IFINDEX_INDEV,  /* u_int32_t ifindex */
        NFQA_IFINDEX_OUTDEV,  /* u_int32_t ifindex */
        NFQA_IFINDEX_PHYSINDEV,  /* u_int32_t ifindex */
        NFQA_IFINDEX_PHYSOUTDEV, /* u_int32_t ifindex */
        NFQA_HWADDR,   /* nfqnl_msg_packet_hw */
        NFQA_PAYLOAD,   /* opaque data payload */
        __NFQA_MAX
    };
    #define NFQA_MAX (__NFQA_MAX - 1)
    
    // nfqueue netlink消息数据判定头
    struct nfqnl_msg_verdict_hdr {
        u_int32_t verdict;
        u_int32_t id;
    } __attribute__ ((packed));
    
    // nfqueue netlink消息配置命令类型
    enum nfqnl_msg_config_cmds {
        NFQNL_CFG_CMD_NONE,
        NFQNL_CFG_CMD_BIND,
        NFQNL_CFG_CMD_UNBIND,
        NFQNL_CFG_CMD_PF_BIND,
        NFQNL_CFG_CMD_PF_UNBIND,
    };
    
    // nfqueue netlink消息配置命令结构
    struct nfqnl_msg_config_cmd {
        u_int8_t command; /* nfqnl_msg_config_cmds */
        u_int8_t _pad;
        u_int16_t pf;  /* AF_xxx for PF_[UN]BIND */
    } __attribute__ ((packed));
    
    // nfqueue netlink消息配置模式
    enum nfqnl_config_mode {
        NFQNL_COPY_NONE,   // 不拷贝
        NFQNL_COPY_META,   // 只拷贝基本信息
        NFQNL_COPY_PACKET, // 拷贝整个数据包
    };
    
    // nfqueue netlink消息配置参数结构
    struct nfqnl_msg_config_params {
        u_int32_t copy_range;
        u_int8_t copy_mode; /* enum nfqnl_config_mode */
    } __attribute__ ((packed));
    
    // nfqueue netlink消息配置模式
    enum nfqnl_attr_config {
        NFQA_CFG_UNSPEC,
        NFQA_CFG_CMD,   /* nfqnl_msg_config_cmd */
        NFQA_CFG_PARAMS,  /* nfqnl_msg_config_params */
        __NFQA_CFG_MAX
    };
    #define NFQA_CFG_MAX (__NFQA_CFG_MAX-1)
    
    /* include/linux/netfilter.c */
    struct nf_info
    {
        /* The ops struct which sent us to userspace. */
        struct nf_hook_ops *elem;
    
        /* If we're sent to userspace, this keeps housekeeping info */
        int pf;
        unsigned int hook;
        struct net_device *indev, *outdev;
        int (*okfn)(struct sk_buff *);
    };
    /* net/netfilter/nfnetlink_queue.c */
    // 队列项结构
    struct nfqnl_queue_entry {
        struct list_head list;
        struct nf_info *info;
        struct sk_buff *skb;
        unsigned int id;
    };
    // 队列实例结构
    struct nfqnl_instance {
        // HASH链表节点
        struct hlist_node hlist;  /* global list of queues */
        atomic_t use;
        // 应用程序的pid
        int peer_pid;
        // 队列最大长度
        unsigned int queue_maxlen;
        // 数据拷贝范围
        unsigned int copy_range;
        // 当前队列元素数
        unsigned int queue_total;
        // 队列丢包数
        unsigned int queue_dropped;
        // 用户程序判定丢包
        unsigned int queue_user_dropped;
        // ID序
        atomic_t id_sequence;   /* 'sequence' of pkt ids */
        // 队列号
        u_int16_t queue_num;   /* number of this queue */
        // 拷贝模式
        u_int8_t copy_mode;
        spinlock_t lock;
        // queue entry队列
        struct list_head queue_list;  /* packets in queue */
    };
    

    3.2 内核程序流程

    3.2.1 系统初始化

    /* net/netfilter/nfnetlink_queue.c */
    static int __init nfnetlink_queue_init(void)
    {
        int i, status = -ENOMEM;
    #ifdef CONFIG_PROC_FS
        struct proc_dir_entry *proc_nfqueue;
    #endif
    
        // 16个HASH链表
        for (i = 0; i < INSTANCE_BUCKETS; i++)
            INIT_HLIST_HEAD(&instance_table[i]);
        // 登记netlink通知
        netlink_register_notifier(&nfqnl_rtnl_notifier);
        // 登记nfnetlink子系统
        status = nfnetlink_subsys_register(&nfqnl_subsys);
        if (status < 0) {
            printk(KERN_ERR "nf_queue: failed to create netlink socket\n");
            goto cleanup_netlink_notifier;
        }
    #ifdef CONFIG_PROC_FS
        // 建立/proc/net/netfilter/nfnetlink_queue文件
        proc_nfqueue = create_proc_entry("nfnetlink_queue", 0440,
                proc_net_netfilter);
        if (!proc_nfqueue)
            goto cleanup_subsys;
        proc_nfqueue->proc_fops = &nfqnl_file_ops;
    #endif
    
        // 登记nfqueue netlink设备通知
        register_netdevice_notifier(&nfqnl_dev_notifier);
        return status;
    #ifdef CONFIG_PROC_FS
    cleanup_subsys:
        nfnetlink_subsys_unregister(&nfqnl_subsys);
    #endif
    cleanup_netlink_notifier:
        netlink_unregister_notifier(&nfqnl_rtnl_notifier);
        return status;
    }
    

    3.2.2

    // netlink通知,只是定义一个通知回调函数, 在接收到netlink套接字信息时调用
    static struct notifier_block nfqnl_rtnl_notifier = {
        .notifier_call = nfqnl_rcv_nl_event,
    };
    
    static int
    nfqnl_rcv_nl_event(struct notifier_block *this,
            unsigned long event, void *ptr)
    {
        struct netlink_notify *n = ptr;
        // 就只处理释放事件
        if (event == NETLINK_URELEASE &&
                n->protocol == NETLINK_NETFILTER && n->pid) {
            int i;
            /* destroy all instances for this pid */
            write_lock_bh(&instances_lock);
            for  (i = 0; i < INSTANCE_BUCKETS; i++) {
                struct hlist_node *tmp, *t2;
                struct nfqnl_instance *inst;
                struct hlist_head *head = &instance_table[i];
                // 释放指定pid的所有子队列信息
                hlist_for_each_entry_safe(inst, tmp, t2, head, hlist) {
                    if (n->pid == inst->peer_pid)
                        __instance_destroy(inst);
                }
            }
            write_unlock_bh(&instances_lock);
        }
        return NOTIFY_DONE;
    }
    
    以下两个函数实现释放操作,实际是调用同一个函数,一个需要加锁,一个不需要
        static inline void
    instance_destroy(struct nfqnl_instance *inst)
    {
        _instance_destroy2(inst, 1);
    }
        static inline void
    __instance_destroy(struct nfqnl_instance *inst)
    {
        _instance_destroy2(inst, 0);
    }
    
    
    static void
    _instance_destroy2(struct nfqnl_instance *inst, int lock)
    {
        /* first pull it out of the global list */
        if (lock)
            write_lock_bh(&instances_lock);
        QDEBUG("removing instance %p (queuenum=%u) from hash\n",
                inst, inst->queue_num);
        // 将队列实例先从链表中移出
        hlist_del(&inst->hlist);
        if (lock)
            write_unlock_bh(&instances_lock);
        /* then flush all pending skbs from the queue */
        // 将当前队列中所有包的判定都设置DROP
        nfqnl_flush(inst, NF_DROP);
        /* and finally put the refcount */
        // 释放队列实例本身
        instance_put(inst);
        // 释放模块引用
        module_put(THIS_MODULE);
    }
    

    3.2.3 子系统

    // 子系统定义
    static struct nfnetlink_subsystem nfqnl_subsys = {
        .name  = "nf_queue",
        .subsys_id = NFNL_SUBSYS_QUEUE, // NFQUEUE的ID号为3
        .cb_count = NFQNL_MSG_MAX, // 3个控制块
        .cb  = nfqnl_cb,
    };
    
    // 子系统回调控制
    static struct nfnl_callback nfqnl_cb[NFQNL_MSG_MAX] = {
        // 接收数据包,实际没进行定义
        [NFQNL_MSG_PACKET] = { .call = nfqnl_recv_unsupp,
            .attr_count = NFQA_MAX, },
        // 接收判定
        [NFQNL_MSG_VERDICT] = { .call = nfqnl_recv_verdict,
            .attr_count = NFQA_MAX, },
        // 接收配置
        [NFQNL_MSG_CONFIG] = { .call = nfqnl_recv_config,
            .attr_count = NFQA_CFG_MAX, },
    };
    

    3.2.3.1

    // 实际没定义
        static int
    nfqnl_recv_unsupp(struct sock *ctnl, struct sk_buff *skb,
            struct nlmsghdr *nlh, struct nfattr *nfqa[], int *errp)
    {
        return -ENOTSUPP;
    }
    

    3.2.3.2 接收判

    该函数接收netlink套接字返回的数据包的判定结果,根据结果对包进行相关处理
    static int
    nfqnl_recv_verdict(struct sock *ctnl, struct sk_buff *skb,
            struct nlmsghdr *nlh, struct nfattr *nfqa[], int *errp)
    {
        struct nfgenmsg *nfmsg = NLMSG_DATA(nlh);
        u_int16_t queue_num = ntohs(nfmsg->res_id);
        struct nfqnl_msg_verdict_hdr *vhdr;
        struct nfqnl_instance *queue;
        unsigned int verdict;
        struct nfqnl_queue_entry *entry;
        int err;
        // 判定数据包大小是否有问题
        if (nfattr_bad_size(nfqa, NFQA_MAX, nfqa_verdict_min)) {
            QDEBUG("bad attribute size\n");
            return -EINVAL;
        }
        // 根据队列号找到队列的实例,并增加计数
        queue = instance_lookup_get(queue_num);
        if (!queue)
            return -ENODEV;
        // 检查该队列对应的pid是否和netlink数据包中的pid匹配
        if (queue->peer_pid != NETLINK_CB(skb).pid) {
            err = -EPERM;
            goto err_out_put;
        }
        // 检查是否返回了判定结果
        if (!nfqa[NFQA_VERDICT_HDR-1]) {
            err = -EINVAL;
            goto err_out_put;
        }
        // 获取判定结果
        vhdr = NFA_DATA(nfqa[NFQA_VERDICT_HDR-1]);
        verdict = ntohl(vhdr->verdict);
        // 低16位为判定结果, 不能超过NF_MAX_VERDICT(5)
        if ((verdict & NF_VERDICT_MASK) > NF_MAX_VERDICT) {
            err = -EINVAL;
            goto err_out_put;
        }
        // 根据返回包的ID号在队列中找缓存具体的数据包
        entry = find_dequeue_entry(queue, id_cmp, ntohl(vhdr->id));
        if (entry == NULL) {
            err = -ENOENT;
            goto err_out_put;
        }
        if (nfqa[NFQA_PAYLOAD-1]) {
            // 返回了负载内容,说明要进行数据包的修改,如果不修改是不用返回载荷内容的
            if (nfqnl_mangle(NFA_DATA(nfqa[NFQA_PAYLOAD-1]),
                        NFA_PAYLOAD(nfqa[NFQA_PAYLOAD-1]), entry) < 0)
                // 修改出错,丢弃数据包
                verdict = NF_DROP;
        }
        // 是否修改数据包的mark值
        if (nfqa[NFQA_MARK-1])
            entry->skb->nfmark = ntohl(*(u_int32_t *)
                    NFA_DATA(nfqa[NFQA_MARK-1]));
        // 和ip_queue一样,调用nf_reinject()重新将数据包发回netfilter进行处理
        // 然后将该entry的内存释放掉
        issue_verdict(entry, verdict);
        // 减少队列引用计数
        instance_put(queue);
        return 0;
    err_out_put:
        instance_put(queue);
        return err;
    }
    

    3.2.3.3 接收配置

    static int
    nfqnl_recv_config(struct sock *ctnl, struct sk_buff *skb,
            struct nlmsghdr *nlh, struct nfattr *nfqa[], int *errp)
    {
        struct nfgenmsg *nfmsg = NLMSG_DATA(nlh);
        u_int16_t queue_num = ntohs(nfmsg->res_id);
        struct nfqnl_instance *queue;
        int ret = 0;
        QDEBUG("entering for msg %u\n", NFNL_MSG_TYPE(nlh->nlmsg_type));
        // 数据大小检查
        if (nfattr_bad_size(nfqa, NFQA_CFG_MAX, nfqa_cfg_min)) {
            QDEBUG("bad attribute size\n");
            return -EINVAL;
        }
        // 
        // 根据队列号找到队列的实例,并增加计数
        queue = instance_lookup_get(queue_num);
        if (nfqa[NFQA_CFG_CMD-1]) {
            // 配置命令,由于可能是进行新建queue操作,所以此时的queue值可能为空
            //
            struct nfqnl_msg_config_cmd *cmd;
            cmd = NFA_DATA(nfqa[NFQA_CFG_CMD-1]);
            QDEBUG("found CFG_CMD\n");
            switch (cmd->command) {
                case NFQNL_CFG_CMD_BIND:
                    if (queue)
                        return -EBUSY;
                    // 绑定命令,就是新建一个queue和对应的pid绑定
                    queue = instance_create(queue_num, NETLINK_CB(skb).pid);
                    if (!queue)
                        return -EINVAL;
                    break;
                case NFQNL_CFG_CMD_UNBIND:
                    // 取消绑定
                    if (!queue)
                        return -ENODEV;
                    // 检查pid是否匹配
                    if (queue->peer_pid != NETLINK_CB(skb).pid) {
                        ret = -EPERM;
                        goto out_put;
                    }
                    // 是否队列实例
                    instance_destroy(queue);
                    break;
                case NFQNL_CFG_CMD_PF_BIND:
                    // 绑定协议族, 将nfqueue handler绑定到指定的协议
                    QDEBUG("registering queue handler for pf=%u\n",
                            ntohs(cmd->pf));
                    ret = nf_register_queue_handler(ntohs(cmd->pf), &nfqh);
                    break;
                case NFQNL_CFG_CMD_PF_UNBIND:
                    // 取消协议族的绑定
                    QDEBUG("unregistering queue handler for pf=%u\n",
                            ntohs(cmd->pf));
                    /* This is a bug and a feature.  We can unregister
                     * other handlers(!) */
                    ret = nf_unregister_queue_handler(ntohs(cmd->pf));
                    break;
                default:
                    ret = -EINVAL;
                    break;
            }
        } else {
            // 如果不是配置命令,检查queue是否存在,pid是否匹配
            if (!queue) {
                QDEBUG("no config command, and no instance ENOENT\n");
                ret = -ENOENT;
                goto out_put;
            }
            if (queue->peer_pid != NETLINK_CB(skb).pid) {
                QDEBUG("no config command, and wrong pid\n");
                ret = -EPERM;
                goto out_put;
            }
        }
        if (nfqa[NFQA_CFG_PARAMS-1]) {
            // 配置参数
            struct nfqnl_msg_config_params *params;
            if (!queue) {
                ret = -ENOENT;
                goto out_put;
            }
            params = NFA_DATA(nfqa[NFQA_CFG_PARAMS-1]);
            // 设置数据拷贝模式
            nfqnl_set_mode(queue, params->copy_mode,
                    ntohl(params->copy_range));
        }
    out_put:
        // 减少引用计数
        // 除了初始化函数和释放函数外,所有其他处理函数的计数增加和减少操作都是成对出现的
        instance_put(queue);
        return ret;
    }
    其中队列实例建立函数如下:
        static struct nfqnl_instance *
    instance_create(u_int16_t queue_num, int pid)
    {
        struct nfqnl_instance *inst;
        QDEBUG("entering for queue_num=%u, pid=%d\n", queue_num, pid);
        write_lock_bh(&instances_lock); 
        // 
        // 根据队列号找到队列的实例,这里是不增加计数的
        if (__instance_lookup(queue_num)) {
            // 理论上是不可能进入这里的
            inst = NULL;
            QDEBUG("aborting, instance already exists\n");
            goto out_unlock;
        }
        // 分配queue实例空间, 初始化参数
        inst = kzalloc(sizeof(*inst), GFP_ATOMIC);
        if (!inst)
            goto out_unlock;
        inst->queue_num = queue_num;
        inst->peer_pid = pid;
        inst->queue_maxlen = NFQNL_QMAX_DEFAULT;
        inst->copy_range = 0xfffff;
        inst->copy_mode = NFQNL_COPY_NONE;
        atomic_set(&inst->id_sequence, 0);
        /* needs to be two, since we _put() after creation */
        // 初始引用计数为2,因为nfqnl_recv_config()会释放掉一次
        atomic_set(&inst->use, 2);
        spin_lock_init(&inst->lock);
        INIT_LIST_HEAD(&inst->queue_list);
        if (!try_module_get(THIS_MODULE))
            goto out_free;
        // 将该队列实例添加到总的队列HASH链表中
        hlist_add_head(&inst->hlist, 
                &instance_table[instance_hashfn(queue_num)]);
        write_unlock_bh(&instances_lock);
        QDEBUG("successfully created new instance\n");
        return inst;
    out_free:
        kfree(inst);
    out_unlock:
        write_unlock_bh(&instances_lock);
        return NULL;
    }
    
    其中nf_queue_handler定义如下, 主要是定义数据进入协议队列函数,这个就是数据包进入nf_queue的
    进入点:
    static struct nf_queue_handler nfqh = {
        .name  = "nf_queue",
        .outfn = &nfqnl_enqueue_packet,
    };
    static int
    nfqnl_enqueue_packet(struct sk_buff *skb, struct nf_info *info, 
            unsigned int queuenum, void *data)
    {
        int status = -EINVAL;
        struct sk_buff *nskb;
        struct nfqnl_instance *queue;
        struct nfqnl_queue_entry *entry;
        QDEBUG("entered\n");
        // 
        // 根据队列号找到队列的实例,并增加计数
        queue = instance_lookup_get(queuenum);
        if (!queue) {
            QDEBUG("no queue instance matching\n");
            return -EINVAL;
        }
        // 如果该子队列拷贝模式是NFQNL_COPY_NONE,出错返回
        if (queue->copy_mode == NFQNL_COPY_NONE) {
            QDEBUG("mode COPY_NONE, aborting\n");
            status = -EAGAIN;
            goto err_out_put;
        }
        // 分配一个队列项entry
        entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
        if (entry == NULL) {
            if (net_ratelimit())
                printk(KERN_ERR 
                        "nf_queue: OOM in nfqnl_enqueue_packet()\n");
            status = -ENOMEM;
            goto err_out_put;
        }
        entry->info = info;
        entry->skb = skb;
        // 数据包的ID是顺序增加的
        entry->id = atomic_inc_return(&queue->id_sequence);
        // 构建一个netlink协议的skb包
        nskb = nfqnl_build_packet_message(queue, entry, &status);
        if (nskb == NULL)
            goto err_out_free;
    
        spin_lock_bh(&queue->lock);
        // pid是否存在,pid为0的进程不存在
        if (!queue->peer_pid)
            goto err_out_free_nskb;
        // 队列长度是否过长
        if (queue->queue_total >= queue->queue_maxlen) {
            queue->queue_dropped++;
            status = -ENOSPC;
            if (net_ratelimit())
                printk(KERN_WARNING "ip_queue: full at %d entries, "
                        "dropping packets(s). Dropped: %d\n", 
                        queue->queue_total, queue->queue_dropped);
            goto err_out_free_nskb;
        }
        /* nfnetlink_unicast will either free the nskb or add it to a socket */
        // 将新构造的netlink数据包发送给上层的netlink套接字
        status = nfnetlink_unicast(nskb, queue->peer_pid, MSG_DONTWAIT);
        if (status < 0) {
            queue->queue_user_dropped++;
            goto err_out_unlock;
        }
        // 将队列项entry放入队列
        __enqueue_entry(queue, entry);
        spin_unlock_bh(&queue->lock);
        // 减少队列计数
        instance_put(queue);
        return status;
    err_out_free_nskb:
        kfree_skb(nskb); 
    
    err_out_unlock:
        spin_unlock_bh(&queue->lock);
    err_out_free:
        kfree(entry);
    err_out_put:
        instance_put(queue);
        return status;
    }
    
    // 构造netlink数据包
        static struct sk_buff *
    nfqnl_build_packet_message(struct nfqnl_instance *queue,
            struct nfqnl_queue_entry *entry, int *errp)
    {
        unsigned char *old_tail;
        size_t size;
        size_t data_len = 0;
        struct sk_buff *skb;
        struct nfqnl_msg_packet_hdr pmsg;
        struct nlmsghdr *nlh;
        struct nfgenmsg *nfmsg;
        // entry info, 可得到inif,outif,hook等
        struct nf_info *entinf = entry->info;
        // entry skb, 原始skb
        struct sk_buff *entskb = entry->skb;
        struct net_device *indev;
        struct net_device *outdev;
        unsigned int tmp_uint;
        QDEBUG("entered\n");
        /* all macros expand to constant values at compile time */
        // 头部固定长度
        size =    NLMSG_SPACE(sizeof(struct nfgenmsg)) +
            + NFA_SPACE(sizeof(struct nfqnl_msg_packet_hdr))
            + NFA_SPACE(sizeof(u_int32_t)) /* ifindex */
            + NFA_SPACE(sizeof(u_int32_t)) /* ifindex */
    #ifdef CONFIG_BRIDGE_NETFILTER
            + NFA_SPACE(sizeof(u_int32_t)) /* ifindex */
            + NFA_SPACE(sizeof(u_int32_t)) /* ifindex */
    #endif
            + NFA_SPACE(sizeof(u_int32_t)) /* mark */
            + NFA_SPACE(sizeof(struct nfqnl_msg_packet_hw))
            + NFA_SPACE(sizeof(struct nfqnl_msg_packet_timestamp));
        // 数据包出网卡
        outdev = entinf->outdev;
        spin_lock_bh(&queue->lock);
    
        switch (queue->copy_mode) {
            case NFQNL_COPY_META:
            case NFQNL_COPY_NONE:
                // 这两种拷贝类型数据长度为0
                data_len = 0;
                break;
    
            case NFQNL_COPY_PACKET:
                // 拷贝整个包
                if (entskb->ip_summed == CHECKSUM_HW &&
                        (*errp = skb_checksum_help(entskb,
                                                   outdev == NULL))) {
                    // 校验和检查失败
                    spin_unlock_bh(&queue->lock);
                    return NULL;
                }
                if (queue->copy_range == 0   // 为0表示不限制拷贝范围长度
                        || queue->copy_range > entskb->len) // 拷贝限制大于数据包长
                    // 数据长度为实际数据包长度
                    data_len = entskb->len;
                else
                    // 数据长度为限制的拷贝长度限制
                    data_len = queue->copy_range;
                // 将data_len对齐后添加包头长度  
                size += NFA_SPACE(data_len);
                break;
    
            default:
                *errp = -EINVAL;
                spin_unlock_bh(&queue->lock);
                return NULL;
        }
        spin_unlock_bh(&queue->lock);
        // 分配skb
        skb = alloc_skb(size, GFP_ATOMIC);
        if (!skb)
            goto nlmsg_failure;
    
        old_tail= skb->tail;
        // netlink信息头放在skb的tailroom中
        nlh = NLMSG_PUT(skb, 0, 0, 
                NFNL_SUBSYS_QUEUE << 8 | NFQNL_MSG_PACKET,
                sizeof(struct nfgenmsg));
        nfmsg = NLMSG_DATA(nlh);
        // 协议族
        nfmsg->nfgen_family = entinf->pf;
        // 版本
        nfmsg->version = NFNETLINK_V0;
        // 队列号
        nfmsg->res_id = htons(queue->queue_num);
        // 包ID号
        pmsg.packet_id   = htonl(entry->id);
        // 硬件协议
        pmsg.hw_protocol = htons(entskb->protocol);
        // nf的hook点
        pmsg.hook  = entinf->hook;
        NFA_PUT(skb, NFQA_PACKET_HDR, sizeof(pmsg), &pmsg);
        // 数据进入网卡
        indev = entinf->indev;
        if (indev) {
            tmp_uint = htonl(indev->ifindex);
    #ifndef CONFIG_BRIDGE_NETFILTER
            NFA_PUT(skb, NFQA_IFINDEX_INDEV, sizeof(tmp_uint), &tmp_uint);
    #else
            if (entinf->pf == PF_BRIDGE) {
                // 如果是桥协议族,填入物理网卡和进入网卡参数
                /* Case 1: indev is physical input device, we need to
                 * look for bridge group (when called from 
                 * netfilter_bridge) */
                NFA_PUT(skb, NFQA_IFINDEX_PHYSINDEV, sizeof(tmp_uint), 
                        &tmp_uint);
                /* this is the bridge group "brX" */
                tmp_uint = htonl(indev->br_port->br->dev->ifindex);
                NFA_PUT(skb, NFQA_IFINDEX_INDEV, sizeof(tmp_uint),
                        &tmp_uint);
            } else {
                /* Case 2: indev is bridge group, we need to look for
                 * physical device (when called from ipv4) */
                // 填入输入网卡信息
                NFA_PUT(skb, NFQA_IFINDEX_INDEV, sizeof(tmp_uint),
                        &tmp_uint);
                if (entskb->nf_bridge
                        && entskb->nf_bridge->physindev) {
                    // 如果存在桥信息和物理进入网卡信息,填入
                    tmp_uint = htonl(entskb->nf_bridge->physindev->ifindex
                            );
                    NFA_PUT(skb, NFQA_IFINDEX_PHYSINDEV,
                            sizeof(tmp_uint), &tmp_uint);
                }
            }
    #endif
        }
        // 数据包发出网卡
        if (outdev) {
            tmp_uint = htonl(outdev->ifindex);
    #ifndef CONFIG_BRIDGE_NETFILTER
            // 没定义桥模块时直接填入发出网卡信息
            NFA_PUT(skb, NFQA_IFINDEX_OUTDEV, sizeof(tmp_uint), &tmp_uint);
    #else
            if (entinf->pf == PF_BRIDGE) {
                // 桥协议组,  分别填入物理发出网卡和发出网卡信息
                /* Case 1: outdev is physical output device, we need to
                 * look for bridge group (when called from 
                 * netfilter_bridge) */
                NFA_PUT(skb, NFQA_IFINDEX_PHYSOUTDEV, sizeof(tmp_uint),
                        &tmp_uint);
                /* this is the bridge group "brX" */
                tmp_uint = htonl(outdev->br_port->br->dev->ifindex);
                NFA_PUT(skb, NFQA_IFINDEX_OUTDEV, sizeof(tmp_uint),
                        &tmp_uint);
            } else {
                /* Case 2: outdev is bridge group, we need to look for
                 * physical output device (when called from ipv4) */
                // 填入发出网卡信息
                NFA_PUT(skb, NFQA_IFINDEX_OUTDEV, sizeof(tmp_uint),
                        &tmp_uint);
                if (entskb->nf_bridge
                        && entskb->nf_bridge->physoutdev) {
                    // 如果存在桥信息和物理发出网卡信息,填入
                    tmp_uint = htonl(entskb->nf_bridge->physoutdev-
                            >ifindex);
                    NFA_PUT(skb, NFQA_IFINDEX_PHYSOUTDEV,
                            sizeof(tmp_uint), &tmp_uint);
                }
            }
    #endif
        }
        if (entskb->nfmark) {
            // 如果数据包MARK值不为0, 填入
            tmp_uint = htonl(entskb->nfmark);
            NFA_PUT(skb, NFQA_MARK, sizeof(u_int32_t), &tmp_uint);
        }
        if (indev && entskb->dev
                && entskb->dev->hard_header_parse) {
            // 填入输入网卡的硬件信息
            struct nfqnl_msg_packet_hw phw;
            phw.hw_addrlen =
                entskb->dev->hard_header_parse(entskb,
                        phw.hw_addr);
            phw.hw_addrlen = htons(phw.hw_addrlen);
            NFA_PUT(skb, NFQA_HWADDR, sizeof(phw), &phw);
        }
        if (entskb->tstamp.off_sec) {
            // 时间戳
            struct nfqnl_msg_packet_timestamp ts;
            ts.sec = cpu_to_be64(entskb->tstamp.off_sec);
            ts.usec = cpu_to_be64(entskb->tstamp.off_usec);
            NFA_PUT(skb, NFQA_TIMESTAMP, sizeof(ts), &ts);
        }
        if (data_len) {
            // 填入数据包长, 以struct nfattr结构方式
            struct nfattr *nfa;
            int size = NFA_LENGTH(data_len);
            if (skb_tailroom(skb) < (int)NFA_SPACE(data_len)) {
                printk(KERN_WARNING "nf_queue: no tailroom!\n");
                goto nlmsg_failure;
            }
            nfa = (struct nfattr *)skb_put(skb, NFA_ALIGN(size));
            nfa->nfa_type = NFQA_PAYLOAD;
            nfa->nfa_len = size;
            if (skb_copy_bits(entskb, 0, NFA_DATA(nfa), data_len))
                BUG();
        }
        // netlink信息长度,新tail减老的tail值
        nlh->nlmsg_len = skb->tail - old_tail;
        return skb;
    nlmsg_failure:
    nfattr_failure:
        if (skb)
            kfree_skb(skb);
        *errp = -EINVAL;
        if (net_ratelimit())
            printk(KERN_ERR "nf_queue: error creating packet message\n");
        return NULL;
    }
    

    3.2.4 登记nfqueue netlink设备通知

    static struct notifier_block nfqnl_dev_notifier = {
        .notifier_call = nfqnl_rcv_dev_event,
    };
    
        static int
    nfqnl_rcv_dev_event(struct notifier_block *this,
            unsigned long event, void *ptr)
    {
        struct net_device *dev = ptr;
        // 只处理设备释放事件,如果网卡DOWN了,就会进行相关处理
        /* Drop any packets associated with the downed device */
        if (event == NETDEV_DOWN)
            nfqnl_dev_drop(dev->ifindex);
        return NOTIFY_DONE;
    }
    
    /* drop all packets with either indev or outdev == ifindex from all queue
     * instances */
        static void
    nfqnl_dev_drop(int ifindex)
    {
        int i;
    
        QDEBUG("entering for ifindex %u\n", ifindex);
        /* this only looks like we have to hold the readlock for a way too long
         * time, issue_verdict(),  nf_reinject(), ... - but we always only
         * issue NF_DROP, which is processed directly in nf_reinject() */
        read_lock_bh(&instances_lock);
        // 查找所有队列
        for  (i = 0; i < INSTANCE_BUCKETS; i++) {
            struct hlist_node *tmp;
            struct nfqnl_instance *inst;
            struct hlist_head *head = &instance_table[i];
            hlist_for_each_entry(inst, tmp, head, hlist) {
                struct nfqnl_queue_entry *entry;
                while ((entry = find_dequeue_entry(inst, dev_cmp, 
                                ifindex)) != NULL)
                    // 一旦数据包的进入或发出网卡是DOWN掉的网卡,就丢弃该数据包
                    issue_verdict(entry, NF_DROP);
            }
        }
        read_unlock_bh(&instances_lock);
    }
    // 比较设备,不论是in还是out的设备,只要和ifindex符合的就匹配成功
        static int
    dev_cmp(struct nfqnl_queue_entry *entry, unsigned long ifindex)
    {
        struct nf_info *entinf = entry->info;
    
        if (entinf->indev)
            if (entinf->indev->ifindex == ifindex)
                return 1;
    
        if (entinf->outdev)
            if (entinf->outdev->ifindex == ifindex)
                return 1;
        return 0;
    }
    

    3.2.5 /proc

    就是以前介绍的2.6.*中用于实现/proc只读文件的seq操作
    static struct file_operations nfqnl_file_ops = {
        .owner  = THIS_MODULE,
        .open  = nfqnl_open,
        .read  = seq_read,
        .llseek  = seq_lseek,
        .release = seq_release_private,
    };
    static int nfqnl_open(struct inode *inode, struct file *file)
    {
        struct seq_file *seq;
        struct iter_state *is;
        int ret;
        is = kzalloc(sizeof(*is), GFP_KERNEL);
        if (!is)
            return -ENOMEM;
        // 打开nfqueue netlink的顺序操作
        // 文件内容就是16个HASH表中的各项的参数,最多65536项
        ret = seq_open(file, &nfqnl_seq_ops);
        if (ret < 0)
            goto out_free;
        seq = file->private_data;
        seq->private = is;
        return ret;
    out_free:
        kfree(is);
        return ret;
    }
    
    static int seq_show(struct seq_file *s, void *v)
    {
        const struct nfqnl_instance *inst = v;
        // 该/proc文件中最大可能会有65536行, 每行表示一个子queue的信息
        return seq_printf(s, "%5d %6d %5d %1d %5d %5d %5d %8d %2d\n",
                inst->queue_num,
                inst->peer_pid, inst->queue_total,
                inst->copy_mode, inst->copy_range,
                inst->queue_dropped, inst->queue_user_dropped,
                atomic_read(&inst->id_sequence),
                atomic_read(&inst->use));
    }
    

    3.3 NFQUEUE目标

    该目标很简单,返回一个无符号32位值,该值的生成就是提供一个16位的队列号,然后左移16位作为结果的
    高16位,低16位置为NF_QUEUE(3).

    #define NF_VERDICT_MASK 0x0000ffff
    #define NF_VERDICT_BITS 16
    #define NF_VERDICT_QMASK 0xffff0000
    #define NF_VERDICT_QBITS 16
    #define NF_QUEUE_NR(x) (((x << NF_VERDICT_QBITS) & NF_VERDICT_QMASK) | NF_QUEUE)
        static unsigned int
    target(struct sk_buff **pskb,
            const struct net_device *in,
            const struct net_device *out,
            unsigned int hooknum,
            const struct xt_target *target,
            const void *targinfo,
            void *userinfo)
    {
        const struct xt_NFQ_info *tinfo = targinfo;
        return NF_QUEUE_NR(tinfo->queuenum);
    }
    

    在iptables命令行就可以将指定的数据包设置为进入指定的子队列,例:

    iptables -A INPUT -s 1.1.1.1 -d 2.2.2.2 -j NFQUEUE --queue-num 100

    将从1.1.1.1到2.2.2.2的包发送到子队列100.

    3.4 NFQUEUE包处理

    和正常netfilter数据包处理一样, 要进行NFQUEUE的数据包也进入nf_hook_slow()函数处理:
    /* net/netfilter/core.c */
    int nf_hook_slow(int pf, unsigned int hook, struct sk_buff **pskb,
            struct net_device *indev,
            struct net_device *outdev,
            int (*okfn)(struct sk_buff *),
            int hook_thresh)
    {
        ......
            // 对于NFQUEUE的包,看verdict的低16位是否为NF_QUEUE
    } else if ((verdict & NF_VERDICT_MASK)  == NF_QUEUE) {
        NFDEBUG("nf_hook: Verdict = QUEUE.\n");
        // 进入nf_queue进行处理
        if (!nf_queue(pskb, elem, pf, hook, indev, outdev, okfn,
                    verdict >> NF_VERDICT_BITS))
            goto next_hook;
        ......
    }
    
    /* net/netfilter/nf_queue.c */
    // nf_queue()函数和以前2.4基本是相同的,从这里是看不出ip_queue和nf_queue的区别,
    // 每个协议族还是只有一个QUEUE的handler,但这时挂接的nf_queue的handler
    // 的处理函数nfqnl_enqueue_packet()
    /* 
     * Any packet that leaves via this function must come back 
     * through nf_reinject().
     */
    int nf_queue(struct sk_buff **skb, 
            struct list_head *elem, 
            int pf, unsigned int hook,
            struct net_device *indev,
            struct net_device *outdev,
            int (*okfn)(struct sk_buff *),
            unsigned int queuenum)
    {
        int status;
        struct nf_info *info;
    #ifdef CONFIG_BRIDGE_NETFILTER
        struct net_device *physindev = NULL;
        struct net_device *physoutdev = NULL;
    #endif
        struct nf_afinfo *afinfo;
        /* QUEUE == DROP if noone is waiting, to be safe. */
        read_lock(&queue_handler_lock);
        if (!queue_handler[pf]) {
            read_unlock(&queue_handler_lock);
            kfree_skb(*skb);
            return 1;
        }
        afinfo = nf_get_afinfo(pf);
        if (!afinfo) {
            read_unlock(&queue_handler_lock);
            kfree_skb(*skb);
            return 1;
        }
        info = kmalloc(sizeof(*info) + afinfo->route_key_size, GFP_ATOMIC);
        if (!info) {
            if (net_ratelimit())
                printk(KERN_ERR "OOM queueing packet %p\n",
                        *skb);
            read_unlock(&queue_handler_lock);
            kfree_skb(*skb);
            return 1;
        }
        *info = (struct nf_info) { 
            (struct nf_hook_ops *)elem, pf, hook, indev, outdev, okfn };
        /* If it's going away, ignore hook. */
        if (!try_module_get(info->elem->owner)) {
            read_unlock(&queue_handler_lock);
            kfree(info);
            return 0;
        }
        /* Bump dev refs so they don't vanish while packet is out */
        if (indev) dev_hold(indev);
        if (outdev) dev_hold(outdev);
    #ifdef CONFIG_BRIDGE_NETFILTER
        if ((*skb)->nf_bridge) {
            physindev = (*skb)->nf_bridge->physindev;
            if (physindev) dev_hold(physindev);
            physoutdev = (*skb)->nf_bridge->physoutdev;
            if (physoutdev) dev_hold(physoutdev);
        }
    #endif
        afinfo->saveroute(*skb, info);
        status = queue_handler[pf]->outfn(*skb, info, queuenum,
                queue_handler[pf]->data);
        read_unlock(&queue_handler_lock);
        if (status < 0) {
            /* James M doesn't say fuck enough. */
            if (indev) dev_put(indev);
            if (outdev) dev_put(outdev);
    #ifdef CONFIG_BRIDGE_NETFILTER
            if (physindev) dev_put(physindev);
            if (physoutdev) dev_put(physoutdev);
    #endif
            module_put(info->elem->owner);
            kfree(info);
            kfree_skb(*skb);
            return 1;
        }
        return 1;
    }
    

    4. 结论

    nf_queue扩展了ip_queue的功能,使用类似802.1qVLAN的技术,将数据包打上不同的“标签”使之归到
    不同的队列,而不再象ip_queue那样只支持一个队列,这样就可以使最多65536个应用程序接收内核数据
    包,从而分别进行更仔细的分类处理。

    相关文章

      网友评论

          本文标题:从ip_queue到nfnetlink_queue

          本文链接:https://www.haomeiwen.com/subject/otmouttx.html