Given a binary tree, determine if it is height-balanced.
For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.
Solution:
这个解法是自顶向下的:从上往下 check 每个 node,但每次都要调用 getHeight,所以复杂度是 O(N^2). 这也是我自己的解法。
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public boolean isBalanced(TreeNode root)
{
if(root == null)
return true;
int leftHeight = getHeight(root.left);
int rightHeight = getHeight(root.right);
if(Math.abs(leftHeight - rightHeight) > 1)
return false;
else
return isBalanced(root.left) && isBalanced(root.right);
}
public int getHeight(TreeNode root)
{
if(root == null)
return 0;
return Math.max(getHeight(root.left), getHeight(root.right)) + 1;
}
}
看了 solution 发现一个自底向上的解法:
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution
{
public boolean isBalanced(TreeNode root)
{
int depth = getHeight(root);
if(depth == -1)
return false;
return true;
}
public int getHeight(TreeNode root)
{
if(root == null)
return 0;
int leftHeight = getHeight(root.left);
int rightHeight = getHeight(root.right);
if(leftHeight == -1) return -1;
if(rightHeight == -1) return -1;
if(Math.abs(leftHeight - rightHeight) > 1)
return -1;
return Math.max(leftHeight, rightHeight) + 1;
}
}
这个解法利用返回值,在 getHeight()中,在向上返回之前,顺便检查左右两边高度差,如果大于1则不平衡,返回-1,否则返回高度。这样在最顶上可以 check 时,如果返回值为-1,则整棵树非 balance。借助返回值来传递不平衡这个信息。
网友评论