美文网首页
数据结构-哈夫曼树(python实现)

数据结构-哈夫曼树(python实现)

作者: 绿萝呀 | 来源:发表于2019-07-22 22:30 被阅读0次

好,前面我们介绍了一般二叉树、完全二叉树、满二叉树,这篇文章呢,我们要介绍的是哈夫曼树。
哈夫曼树也叫最优二叉树,与哈夫曼树相关的概念还有哈夫曼编码,这两者其实是相同的。哈夫曼编码是哈夫曼在1952年提出的。现在哈夫曼编码多应用在文本压缩方面。接下来,我们就来介绍哈夫曼树到底是个什么东西?哈夫曼编码又是什么,以及它如何应用于文本压缩。

哈夫曼树(Huffman Tree)

给定n个权值作为n个叶子结点,构造一棵二叉树,若该树的带权路径长度达到最小,称这样的二叉树为最优二叉树,也称为哈夫曼树(Huffman Tree)。哈夫曼树是带权路径长度最短的树,权值较大的结点离根较近。

首先,我们有这样一些数据:

sourceData = [('a', 8), ('b', 5), ('c', 3), ('d', 3), ('e', 8), ('f', 6), ('g', 2), ('h', 5), ('i', 9), ('j', 5), ('k', 7), ('l', 5), ('m', 10), ('n', 9)]

每一个数据项是一个元组,元组的第一项是数据内容,第二项是该数据的权重。也就是说,用于构建哈夫曼树的数据是带权重的。假设这些数据里面的字母a-n的权重是根据这些字母在y一个文本出出现的概率计算得出的,字母出现的概率越高,则该字母的权重越大。例如字母 a 的权重为 8 .

好,拿到数据我们就可以来构建哈夫曼树了。

  1. 首先,找出所有元素中权重最小的两个元素,即g(2)和c(3),
  2. 以g和c为子节点构建二叉树,则构建的二叉树的父节点的权重为 2+3 = 5.
  3. 从除g和c以外剩下的元素和新构建的权重为5的节点中选出权重最小的两个节点,
  4. 进行第 2 步操作。

以此类推,直至最后合成一个二叉树就是哈夫曼树。

我们用图例来表示一下:

  1. image
  2. image
  3. image
  4. image
  5. image
  6. image
  7. image
  8. image
  9. image
  10. image
  11. image

好,这里我们的哈夫曼树就构建好了,节点中字母后面的数字表示该字母的权重,就是前面给定的数据。在这里我要强调的是,同样的数据创建的哈夫曼树并不是唯一的,所以只要按照规则一步一步没有出错,你的哈夫曼树就是正确的。

我们现在将访问左节点定义为0,访问右节点定义为1.则我们现在访问字母a,则它的编码为0110,访问字母n的编码为111,这个编码就是哈夫曼编码。

通过比对不同字母的哈夫曼编码,你发现了什么?

权重越大的字母对应的哈夫曼编码越短,权重越小的字母对应的哈夫曼编码则越长。也就是说文本中出现概率大的字母编码短,出现概率小的字母编码长。通过这种编码方式来表示文本中的字母,那所得整个文本的编码长度也会缩短。

这就是哈夫曼树也就是哈夫曼编码在文本压缩中的应用。

下面我们用代码来实现:

定义一个二叉树类:

class BinaryTree:
    def __init__(self, data, weight):
        self.data = data
        self.weight = weight
        self.left = None
        self.right = None

获取节点列表中权重最小的两个节点:

# 定义获取列表中权重最大的两个节点的方法:
def min2(li):
    result = [BinaryTree(None, float('inf')), BinaryTree(None, float('inf'))]
    li2 = []
    for i in range(len(li)):
        if li[i].weight < result[0].weight:
            if result[1].weight != float('inf'):
                li2.append(result[1])
            result[0], result[1] = li[i], result[0]
        elif li[i].weight < result[1].weight:
            if result[1].weight != float('inf'):
                li2.append(result[1])
            result[1] = li[i]
        else:
            li2.append(li[i])
    return result, li2

定义生成哈夫曼树的方法:

def makeHuffman(source):
    m2, data = min2(source)
    print(m2[0].data, m2[1].data)
    left = m2[0]
    right = m2[1]

    sumLR = left.weight + right.weight
    father = BinaryTree(None, sumLR)
    father.left = left
    father.right = right
    if data == []:
        return father
    data.append(father)
    return makeHuffman(data)

定义广度优先遍历方法:

# 递归方式实现广度优先遍历
def breadthFirst(gen, index=0, nextGen=[], result=[]):

    if type(gen) == BinaryTree:
        gen = [gen]
    result.append((gen[index].data, gen[index].weight))
    if gen[index].left != None:
        nextGen.append(gen[index].left)
    if gen[index].right != None:
        nextGen.append(gen[index].right)

    if index == len(gen)-1:
        if nextGen == []:
            return
        else:
            gen = nextGen
            nextGen = []
            index = 0
    else:
        index += 1
    breadthFirst(gen, index, nextGen,result)

    return result

输入数据:

# 某篇文章中部分字母根据出现的概率规定权重
sourceData = [('a', 8), ('b', 5), ('c', 3), ('d', 3), ('e', 8), ('f', 6), ('g', 2), ('h', 5), ('i', 9), ('j', 5), ('k', 7), ('l', 5), ('m', 10), ('n', 9)]
sourceData = [BinaryTree(x[0], x[1]) for x in sourceData]

创建哈夫曼树并进行广度优先遍历:

huffman = makeHuffman(sourceData)
print(breadthFirst(huffman))

OK ,我们的哈夫曼树就介绍到这里了,你还有什么不懂的问题记得留言给我哦。

相关文章

  • 哈夫曼树(代码实现)

    前面我们介绍了哈夫曼树的理论实现,现在介绍一下具体代码实现。 我们先定义哈夫曼树节点的数据结构。 在有了树节点之后...

  • 哈夫曼编码

    实验目的: (1) 掌握二叉树的定义; (2) 掌握哈夫曼树和哈夫曼编码算法的实现。 实验内容: 实现一个哈夫曼编...

  • 数据结构-哈夫曼树(python实现)

    好,前面我们介绍了一般二叉树、完全二叉树、满二叉树,这篇文章呢,我们要介绍的是哈夫曼树。哈夫曼树也叫最优二叉树,与...

  • 哈夫曼树

    数据结构——哈夫曼树 哈夫曼树又被称为最优二叉树,是指一类带权路径长度最小的二叉树,哈夫曼树的遍历不是唯一的,因为...

  • 数据结构06-哈夫曼树与哈夫曼编码

    数据结构06-哈夫曼树 一、哈夫曼树的基本概念 1.哈夫曼树 给定n个权值作为n个叶子节点,构造一棵二叉树,若带权...

  • 《恋上数据结构与算法一》笔记(十八)哈夫曼树

    目录 哈夫曼编码(Huffman Coding) 哈夫曼树 构建哈夫曼树 构建哈夫曼编码 一 哈夫曼编码(Huff...

  • 《数据结构与算法》总结(七)哈夫曼树

    目录 哈夫曼编码(Huffman Coding) 哈夫曼树 构建哈夫曼树 构建哈夫曼编码 一 哈夫曼编码(Huff...

  • 2018-11-27

    专业英语 第九章 数据结构 根据哈夫曼树求哈夫曼编码以及图的基本定义

  • 大师兄的数据结构学习笔记(九): 图

    大师兄的数据结构学习笔记(八): 哈夫曼树与哈夫曼编码[https://www.jianshu.com/p/7e4...

  • A simple test

    哈夫曼编码 此代码用于生成哈夫曼树并且获取哈夫曼编码

网友评论

      本文标题:数据结构-哈夫曼树(python实现)

      本文链接:https://www.haomeiwen.com/subject/ovgglctx.html