孔乙己的线性回归

作者: readilen | 来源:发表于2019-07-29 09:49 被阅读2次

改编自鲁迅《孔乙己》:

在这些时候,我可以附和着笑,老板是决不责备的。而且老板见了孔乙己,也每每这样问他,引人发笑。孔乙己自己知道不能和他们谈天,便只好向孩子说话。有一回对我说道,“你学过人工智能么?”我略略点一点头。他说,“学过一点,……我便考你一考。机器学习的线性回归,你会写吗?”我想,讨饭一样的人,也配考我么?便回过脸去,不再理会。孔乙己等了许久,很恳切的说道,“不能写罢?……我教给你,记着!这些是应该记着。将来做老板的时候,必须要用的。”我暗想我和老板的等级还很远呢,而且我们老板也从不用线性回归跑数据;又好笑,又不耐烦,懒懒的答他道,“谁要你教,不就是sklearn下的LinearRegression吗?”孔乙己显出极高兴的样子,将两个指头的长指甲敲着柜台,点头说,“对呀对呀!……线性回归有四样写法,你知道么?”我愈不耐烦了,努着嘴走远。孔乙己从怀里掏出ThinkPad T60,想码字,见我毫不热心,便又叹一口气,显出极惋惜的样子。

代码前准备

f(x) = w^{T}x+b
其中w叫做权重系数,b叫做偏置项。
那么如何确定w,b呢。关键在于我们的预测值和实际值间的差距。在回归任务中,均方误差是最常用的性能度量。

from __future__ import division, print_function, unicode_literals

# Common imports
import numpy as np
import os

# to make this notebook's output stable across runs
np.random.seed(42)

# To plot pretty figures
%matplotlib inline
import matplotlib as mpl
import matplotlib.pyplot as plt

X = 2 * np.random.rand(100, 1)
y = 4 + 3 * X + np.random.randn(100, 1)

我们看看数据情况

plt.plot(X, y, "b.")
plt.xlabel("$x_1$", fontsize=18)
plt.ylabel("$y$", rotation=0, fontsize=18)
plt.axis([0, 2, 0, 15])
save_fig("generated_data_plot")
plt.show()
image.png

法1

X_b = np.c_[np.ones((100, 1)), X]  # add x0 = 1 to each instance
theta_best = np.linalg.inv(X_b.T.dot(X_b)).dot(X_b.T).dot(y)
theta_best
X_new = np.array([[0], [2]])
X_new_b = np.c_[np.ones((2, 1)), X_new]  # add x0 = 1 to each instance
y_predict = X_new_b.dot(theta_best)
y_predict
plt.plot(X_new, y_predict, "r-")
plt.plot(X, y, "b.")
plt.axis([0, 2, 0, 15])
plt.show()
image.png

法2

from sklearn.linear_model import LinearRegression
lin_reg = LinearRegression()
lin_reg.fit(X, y)
lin_reg.intercept_, lin_reg.coef_
lin_reg.predict(X_new)

法3

LinearRegression 是基于scipy.linalg.lstsq()函数 (是标准的 "least squares")因此可以直接使用:

theta_best_svd, residuals, rank, s = np.linalg.lstsq(X_b, y, rcond=1e-6)
theta_best_svd

法4

使用Moore-Penrose逆矩阵计算

np.linalg.pinv(X_b).dot(y)

相关文章

  • 孔乙己的线性回归

    改编自鲁迅《孔乙己》: 在这些时候,我可以附和着笑,老板是决不责备的。而且老板见了孔乙己,也每每这样问他,引人发笑...

  • 机器学习实战——回归

    本章内容】 线性回归 局部加权线性回归 岭回归和逐步线性回归 例子 【线性回归】 wHat = (X.T*X).I...

  • 第一次打卡

    线性回归主要内容包括: 线性回归的基本要素线性回归模型从零开始的实现线性回归模型使用pytorch的简洁实现线性回...

  • 线性回归模型

    参考:1.使用Python进行线性回归2.python机器学习:多元线性回归3.线性回归概念 线性回归模型是线性模...

  • 逻辑回归和线性回归对比

    简单说几点 线性回归和逻辑回归都是广义线性回归模型的特例。他们俩是兄弟关系,都是广义线性回归的亲儿子 线性回归只能...

  • 算法概述-02

    1.逻辑回归和线性回归的联系和区别: 逻辑回归和线性回归的都是广义的线性回归。 线性回归是根据最小二乘法来建模,逻...

  • 2020-02-14

    线性回归:线性回归分为一元线性回归和多元线性回归,一元线性回归用一条直线描述数据之间的关系,多元回归是用一条曲线描...

  • 通俗得说线性回归算法(二)线性回归实战

    前情提要:通俗得说线性回归算法(一)线性回归初步介绍 一.sklearn线性回归详解 1.1 线性回归参数 介绍完...

  • 动手学深度学习(一) 线性回归

    线性回归 主要内容包括: 线性回归的基本要素 线性回归模型从零开始的实现 线性回归模型使用pytorch的简洁实现...

  • 线性回归

    线性回归 主要内容包括: 线性回归的基本要素 线性回归模型从零开始的实现 线性回归模型使用pytorch的简洁实现...

网友评论

    本文标题:孔乙己的线性回归

    本文链接:https://www.haomeiwen.com/subject/ovjvrctx.html