美文网首页域外知识
主成分计算权重全步骤梳理!

主成分计算权重全步骤梳理!

作者: spssau | 来源:发表于2022-05-13 09:43 被阅读0次

一、研究场景

主成分分析用于对数据信息进行浓缩,比如总共有20个指标值,是否可以将此20项浓缩成4个概括性指标。除此之外,主成分分析可用于权重计算和综合竞争力研究。即主成分分共有三个实际应用场景:

二、SPSSAU操作

SPSSAU左侧仪表盘“进阶方法”→“主成分”;

三、SPSSAU一般步骤

第一步:判断是否进行主成分(pca)分析;判断标准为KMO值大于0.6。

第二步:主成分与分析项对应关系判断。

特别提示:如果研究目的完全在于信息浓缩,并且找出主成分与分析项对应关系,此时SPSSAU建议使用因子分析【请参考因子分析手册】,而非主成分分析。主成分分析目的在于信息浓缩(但不太关注主成分与分析项对应关系),权重计算,以及综合得分计算。

有时不太会关注主成分与分析项的对应关系情况,比如进行综合竞争力计算时,不需要过多关注主成分与分析项的对应关系情况。

主成与分析项对应关系判断:假设预期为3个主成分,分析项为10个;主成分与分析项交叉共得到30个数字,此数字称作“载荷系数”(载荷系数值表示分析项与主成分之间的相关程度); 针对每个主成分,对应10个”载荷系数”,针对每个分析项,则有3个“载荷系数值”(比如0.765,-0.066,0.093),选出3个数字绝对值大于0.4的那个值(0.765),如果其对应主成分1,则说明此分析项应该划分在主成分1下面.

对不合理分析项进行删除,共有三种情况; 第一类:如果分析项的共同度(公因子方差)值小于0.4,则对应分析项应该作删除处理;第二类:某分析项对应的“载荷系数”的绝对值,全部均小于0.4,也需要删除此分析项;第三类:如果某分析项与主成分对应关系出现严重偏差(通常也称作‘张冠李戴’),也需要对该分析项进行删除处理.

第三步:主成分命名

在第二步删除掉不合理分析项后,并且确认主成分与分析项对应关系良好后,则可结合主成分与分析项对应关系,对主成分进行命名.

四、主成分分析计算权重

1.方差解释率表格

使用主成分分析得到方差解释率表格,主成分分析一共提取出2个主成分,特征根值均大于1,此2个主成分的方差解释率分别是54.450%,7.798%,累积方差解释率为62.248%。

2.载荷系数表格

载荷系数表格里显示的是各分析项在主成分中的载荷系数,载荷系数可以反映主成分对于分析项的信息提取情况。

在计算分析项权重的时候,需要利用载荷系数等信息进行计算,共分为三步:

第一:计算线性组合系数矩阵,公式为:loading矩阵/Sqrt(特征根),即载荷系数除以对应特征根的平方根。

3.线性组合系数及权重结果

在计算分析项权重的时候,需要利用载荷系数等信息进行计算,共分为三步:

第一:计算线性组合系数矩阵,公式为:loading矩阵/Sqrt(特征根),即载荷系数除以对应特征根的平方根。

例:主成分1:

以此类推。

主成分2:

以此类推。

第二:计算综合得分系数,公式为:累积(线性组合系数*方差解释率)/累积方差解释率,即线性组合系数分别与方差解释率相乘后累加,并且除以累积方差解释率,即得到综合得分系数。

例:(0.287*54.45%)/62.25% + (0.1201*7.80%)/62.25%≈0.2661;

(0.278*54.45%)/62.25% + (0.1201*7.80%)/62.25%≈0.2683;

(0.2443*54.45%)/62.25% + (0.5818 *7.80%)/62.25%≈0.2866;

(0.2617*54.45%)/62.25% + (0.4385 *7.80%)/62.25%≈0.2839;

以此类推。

第三:计算权重,将综合得分系数进行求和归一化处理即得到各指标权重值。

求和归一化: 

例:综合得分系数和为3.2671,(0.2661+0.2683+…+0.2199=3.2671)。

0.2661/3.2671=8.15%;0.2683/3.2671=8.21%;0.2866/3.2671=8.77%;以此类推。

4.载荷图

载荷图是针对成分与旋转后载荷值关系的图形化展示,使用较少,通常需要手工加‘圆圈’把挨在一起的因子圈起来,更直观展示成分与分析项的隶属对应关系情况。由于可读性和解释性问题,一般只关注于方差解释率靠前的前面几个成分,多数情况下只关注2个。

五、其他输出指标说明

1.KMO 和 Bartlett 的检验

使用主成分分析进行信息浓缩研究,首先分析研究数据是否适合进行主成分分析,从上表可以看出:KMO为0.910,大于0.6,满足主成分分析的前提要求,意味着数据可用于主成分分析研究。以及数据通过Bartlett 球形度检验(p<0.05),说明研究数据适合进行主成分分析。

2.成份得分系数矩阵

 使用主成分分析目的在于信息浓缩,则忽略“成份得分系数矩阵”表格。如果使用主成分分析法进行权重计算,则需要使用“成份得分系数矩阵”建立主成分和研究项之间的关系等式(基于标准化后数据建立关系表达式),如下:

成分得分1

=0.104*A1+0.101*A2+…+0.101*D2+0.090*D3;

成分得分2

=0.115*A1+0.192*A2+…-0.044*D2+0.025*D3;

3.碎石图

  可结合碎石图辅助判断主成分提取个数。当折线由陡峭突然变得平稳时,陡峭到平稳对应的主成分个数即为参考提取主成分个数。实际研究中更多以专业知识,结合主成分与研究项对应关系情况,综合权衡判断得出主成分个数。图中可以看出当横坐标为2时,折线突然变得比较平稳。

六、疑难解惑

1.主成分回归是什么意思?

主成分分析后,选中保存‘成分得分’,SPSSAU系统会新生成标题用于标识‘成分得分’,比如:PcaScore1_1234,继续使用‘成分得分’用于接下来的线性回归分析,即称作‘主成分回归’,通常‘主成分回归’用于解决共线性问题。

2.SPSSAU时,面板数据如何进行主成分分析?

面板数据可直接进行主成分分析,面板数据格式相对较为特殊,在分析上直接针对研究指标进行分析即可。

3. SPSSAU时,成分得分是标准化后的数据进行吗?

成分得分的数据计算,默认是基于标准化后的数据进行。

七、总结

在各个领域的科学研究中,为了全面客观的分析问题,往往需要对反映事物的多个变量进行大量的观测,如果对这些变量进行一个一个的分析,可能会造成看待事物片面,不好得出一致的结论,主成分分析就是考虑各指标之间的相互关系,利用降维的思维,把多个指标转换成较少的几个互不相关的综合指标,从而使研究变的更简单。以上就是主成分分析的指标说明。

更多干货请前往SPSSAU官网查看。

相关文章

  • 主成分计算权重全步骤梳理!

    一、研究场景 主成分分析用于对数据信息进行浓缩,比如总共有20个指标值,是否可以将此20项浓缩成4个概括性指标。除...

  • 主成分计算权重

    一、案例背景 案例说明与研究目的 研究调查100家公司2010-2013年关于财务方面的具体数据,这些财务指标维度...

  • 如何利用主成分法计算权重?

    主成分计算权重是一种常见方法,之前的文章中和大家介绍过,如何利用熵值法计算权重。 今天的文章,一起来看看如何通过主...

  • CSS权重计算规则

    本文将介绍什么权重计算规则,摘录来自博客园。原文博主:全全的前端浆糊原文链接:https://www.cnblog...

  • python数据分析之主成分分析

    主成分分析,又称PCA,是指将多个变量通过线性变换以后选出较少个重要变量的一种多元统计方法。 主成分分析计算步骤:...

  • 如何用TOPSIS法计算权重?

    用于计算权重的方法有很多:主成分分析、专家评分法、层次分析法、熵值法等,除此之外还有一些实用的综合评价方法,如灰色...

  • 利用 PCA 来对数据降维

    降维往往作为预处理步骤,其中独立成分分析、因子分析和主成分分析比较流行,主成分分析(PCA)最为广泛。 PCA借助...

  • 手把手教你用熵值法计算权重

    由于对数据要求少,且容易计算,熵值法一直是备受欢迎的权重计算方法。 今天的文章,将带大家一起梳理熵值法计算权重的步...

  • 【理论篇】:主成分分析法和变量聚类

    压缩变量的思路方法 建模前—主成分、因子分析或变量聚类建模时—逐步法或者全子集法 主成分分析:根据变量之间的相关性...

  • 白话“主成分分析” 1 :主成分分析用于降维的思想

    白话“主成分分析” 1 :主成分分析用于降维的思想 [TOC] 1. 什么是主成分分析 主成分分析,即分析“主成分...

网友评论

    本文标题:主成分计算权重全步骤梳理!

    本文链接:https://www.haomeiwen.com/subject/oycsyrtx.html