镇楼图参上
方法1:由数组或列表组成的字典构建DataFrame(常用)
#字典的键作为列
import pandas as pd
data1 = {'a' : [1,2,3],'b' : [4,5,6], 'c' : [7,8,9]}
df1 = pd.DataFrame(data1)
print(df1)
###########
# a b c
#0 1 4 7
#1 2 5 8
#2 3 6 9
方法2:由Series组成的字典构建DataFrame(常用)
data2 = {'a' : pd.Series(np.random.rand(3)),
'b' : pd.Series(np.random.rand(3)*10),
'c' : pd.Series(np.random.rand(3)*100)}
df2 = pd.DataFrame(data2)
print(df2)
#################################
# a b c
#0 0.713086 1.196266 98.645137
#1 0.810221 6.738664 37.399359
#2 0.153884 2.247200 47.458595
方法3:通过二维数组构建DataFrame(常用)
df3 = pd.DataFrame(np.random.randint(10,100,(3,7)))
print(df3)
##############################
# 0 1 2 3 4 5 6
#0 32 89 34 99 96 79 79
#1 35 29 34 21 19 16 30
#2 80 92 65 46 15 60 36
方法4:由字典组成的列表构建DataFrame
data4 = [{'a':1,'b':2},{'a':5,'b':10,'c':15}]
df4 = pd.DataFrame(data4)
print(df4)
###############
# a b c
#0 1 2 NaN
#1 5 10 15.0
方法5:由字典组成的字典构建DataFrame
data5 = {'xiaoming':{'Chinese':np.random.randint(60,100),
'Math':np.random.randint(60,100),
'Endlish':np.random.randint(60,100)},
'xiaohong':{'Chinese':np.random.randint(60,100),
'Math':np.random.randint(60,100),
'Endlish':np.random.randint(60,100)},
'xiaogang':{'Chinese':np.random.randint(60,100),
'Math':np.random.randint(60,100),
'Endlish':np.random.randint(60,100)},
}
df5 = pd.DataFrame(data5)
print(df5)
######################################
# xiaoming xiaohong xiaogang
#Chinese 75 68 86
#Endlish 84 93 87
#Math 61 84 75
网友评论