image最近有收到一些反馈,以后我还会写一些信号处理相关的文章,说不定什么时候会讲讲我从接触信号处理到现在的一些感受之类的,内容不限。有空我也会分享一些好的文章和书籍等等。
再上一篇文章“Automotive radar信号处理 第5课 先进技术估计(1)”中,我们先是介绍了ML估计的方法,利用ML估计的方法其对于计算平台的性能要求是比较高的,针对ML的估计方法,这篇文章主要介绍另外一种先进的估计方法-超分辨的方法。
超分辨估计
由于ML估计方法具有较高的计算复杂度,因此,我们需要找到另外的一种次优的方法。这些先进估计技术需要足够多的信号样本,以及较高的SNR,通过对协方差矩阵的ML估计可以得到我们期望的得到的目标参数。而得到的协方差矩阵可以利用特征值分解的方法,这种方法对于目标可以实现更好的分辨。
常用的超分辨方法主要有MUSIC(多重信号分类)以及ESPRIT(旋转不变技术),关于这两个经典的算法,MUSIC可以看看R.Schmidt的文章“Multiple emitter location and signal parameter estimation”,ESPRIT算法看R.Roy的“ESPRIT-estimation of signal parameters via rotational invariance techniques”。后面有时间可以专门讲讲这两个算法。
在上一篇讲ML估计的文章中,我们给出的FMCW雷达在静止情况下,用于2D的(R,θ)估计的信号模型为:
image
这篇文章中,我们将从(R,θ)两个维度分别按照超分辨的方法进行处理。之前讲到过,对上面给出的式子进行时频分析可以得到距离信息,从空域分析,可以得到目标的角度信息。因此,我们可以利用超分辨的方法,比如MUSIC进行处理。
2-D超分辨的算法**
算法的输入:利用FMCW雷达采得静止目标的数据,这个数据是一个2维的矩阵,D****_LN,其中N为时域样本,N为空域样本。
算法的输出:一个2维的距离-角度超分辨结果矩阵
-
由于MUSIC算法假设处理的信号都是非相干的,但是实际的应用中,会存在相干的信号,所以在应用MUSIC算法时,需要进行平滑去相干处理。具体的做法是对天线阵列取若干子阵列,对所有子阵列的协方差矩阵再取平均。
-
对于平滑后的协方差矩阵进行特征分解,得到噪声子空间(MUSIC的特征分解可以得到信号子空间和噪声子空间),另外可以通过AIC准则或者MDL准则得到信源数目。
-
构造指向向量
- 在(R,θ)空间应用超分辨MUSIC方法
当然,MUSIC这种超分辨的方法由于在计算过程中需要进行遍历搜索,所以在实际的应用中,我们一般只对目标存在的区域进行处理,也就是感兴趣的区域,这样处理就会减小可用的样本数,因而就会出现一些其他的问题,后面有空再写。
网友评论