LeakCanary是Square公司基于MAT开源的一个内存泄漏检测神器,在发生内存泄漏的时候LeakCanary会自动显示泄漏信息,现在更新了好几个版本,用kotlin语言重新实现了一遍;鹅场APM性能监控框架也集成了内存泄露模块 ResourcePlugin ,这里就两者进行对比。
1、组件启动
LeakCanary自动注册启动
原理:专门定制了一个ContentProvider,来注册启动LeakCanary
实现如下:
/**
* Content providers are loaded before the application class is created. [LeakSentryInstaller] is
* used to install [leaksentry.LeakSentry] on application start.
*/
internal class LeakSentryInstaller : ContentProvider() {
override fun onCreate(): Boolean {
CanaryLog.logger = DefaultCanaryLog()
val application = context!!.applicationContext as Application
InternalLeakSentry.install(application)
return true
}
...
}
ResourcePlugin 需要手动启动
public class MatrixApplication extends Application {
...
@Override
public void onCreate() {
super.onCreate();
...
ResourcePlugin resPlugin = null;
if (matrixEnable) {
resPlugin = new ResourcePlugin(new ResourceConfig.Builder()
.dynamicConfig(dynamicConfig)
.setDumpHprof(false)
.setDetectDebuger(true) //only set true when in sample, not in your app
.build())
//resource
builder.plugin(resPlugin );
ResourcePlugin.activityLeakFixer(this);
...
}
Matrix.init(builder.build());
if(resPlugin != null){
resPlugin.start();
}
}
}
2、watcher范围和自动wacherd的对象
LeakCanary RefWatcher可以watcher任何对象(包括Activity、Fragment、Fragment.View)
class RefWatcher{
fun watch(watchedInstance: Any) {...}
fun watch( watchedInstance: Any,name: String) {...}
}
支持自动watcher Activity、Fragment、Fragment.View对象
1.自动watcher Activity
internal class ActivityDestroyWatcher {
private val lifecycleCallbacks =
object : Application.ActivityLifecycleCallbacks by noOpDelegate() {
override fun onActivityDestroyed(activity: Activity) {
if (configProvider().watchActivities) {
refWatcher.watch(activity)
}
}
}
companion object {
fun install(... ) {
val activityDestroyWatcher =
ActivityDestroyWatcher(refWatcher, configProvider)
application.registerActivityLifecycleCallbacks(activityDestroyWatcher.lifecycleCallbacks)
}
}
}
ActivityDestroyWatcher.install在LeakSentryInstaller.onCreate间接调用,注册ActivityLifecycleCallbacks 监听Activity的生命周期,从而实现自动watcher Activity对象。
2.自动watcher Fragment、Fragment.View
//子类有
//SupportFragmentDestroyWatcher
//AndroidOFragmentDestroyWatcher
internal interface FragmentDestroyWatcher {
fun watchFragments(activity: Activity)
companion object {
...
fun install(... ) {
...
application.registerActivityLifecycleCallbacks(object : Application.ActivityLifecycleCallbacks by noOpDelegate() {
override fun onActivityCreated( activity: Activity,
savedInstanceState: Bundle? ) {
for (watcher in fragmentDestroyWatchers) {
watcher.watchFragments(activity)
}
}
})
}
}
}
FragmentDestroyWatcher .install在LeakSentryInstaller.onCreate间接调用,注册ActivityLifecycleCallbacks 监听Activity的生命周期函数onCreate,然后对activity.fragmentManager注册FragmentLifecycleCallbacks监听Fragment的周期函数,从而实现自动watcher Fragment、Fragment.View如下:
internal class XXXFragmentDestroyWatcher(...) : FragmentDestroyWatcher {
private val fragmentLifecycleCallbacks = object : FragmentManager.FragmentLifecycleCallbacks() {
override fun onFragmentViewDestroyed(
fm: FragmentManager,
fragment: Fragment
) {
val view = fragment.view
if (view != null && configProvider().watchFragmentViews) {
//watcher view
refWatcher.watch(view)
}
}
override fun onFragmentDestroyed(
fm: FragmentManager,
fragment: Fragment
) {
if (configProvider().watchFragments) {
//watcher fragment
refWatcher.watch(fragment)
}
}
}
//AndroidOFragmentDestroyWatcher
override fun watchFragments(activity: Activity) {
val fragmentManager = activity.fragmentManager
fragmentManager.registerFragmentLifecycleCallbacks(fragmentLifecycleCallbacks, true)
}
//SupportFragmentDestroyWatcher
override fun watchFragments(activity: Activity) {
if (activity is FragmentActivity) {
val supportFragmentManager = activity.supportFragmentManager
supportFragmentManager.registerFragmentLifecycleCallbacks(fragmentLifecycleCallbacks, true)
}
}
}
Replugin 只有一个ActivityRefWatcher,只支持watcher Activity,也是通过注册ActivityLifecycleCallbacks 监听Activity的生命周期,从而实现自动watcher Activity对象。
public class ActivityRefWatcher extends FilePublisher implements Watcher {
@Override
public void start() {
stopDetect();
final Application app = mResourcePlugin.getApplication();
if (app != null) {
app.registerActivityLifecycleCallbacks(mRemovedActivityMonitor);
//轮询检测是否发生溢出
scheduleDetectProcedure();
}
}
private final Application.ActivityLifecycleCallbacks mRemovedActivityMonitor = new ActivityLifeCycleCallbacksAdapter() {
@Override public void onActivityDestroyed(Activity activity) {
//push mDestroyedActivityInfos集合中,通过轮询检测对mDestroyedActivityInfos进行处理
pushDestroyedActivityInfo(activity);
synchronized (mDestroyedActivityInfos) {
mDestroyedActivityInfos.notifyAll();
{
}};
3、检测泄露实现
1.检测线程
LeakCanay检测实现,旧版本是在一个HandlerThread 轮询检测,现在发生改变,先在主线程中触发检测,由RefWatcher.watch主动触发,对activity,Fragment,Fragment.view的检测,即由生命周期触发,然后在
非主线程中进行真正的check。
现在主线中被动触发检测依据如下:
class RefWatcher{
fun watch( watchedInstance: Any,name: String) {
...
watchedInstances[key] = reference
checkRetainedExecutor.execute {
moveToRetained(key)
}
}
}
internal object InternalLeakSentry {
...
private val checkRetainedExecutor = Executor {
mainHandler.postDelayed(it, LeakSentry.config.watchDurationMillis)
}
val refWatcher = RefWatcher(
clock = clock,
checkRetainedExecutor = checkRetainedExecutor,
onInstanceRetained = { listener.onReferenceRetained() },
isEnabled = { LeakSentry.config.enabled }
)
...
}
从moveToRetained调用,最终辗转到HeapDumpTrigger的方法scheduleRetainedInstanceCheck方法,然后在非主线中进行真正check,代码如下:
internal class HeapDumpTrigger() {
private fun scheduleRetainedInstanceCheck(reason: String) {
if (checkScheduled) {
CanaryLog.d("Already scheduled retained check, ignoring ($reason)")
return
}
checkScheduled = true
//非主线程hanlder
backgroundHandler.post {
checkScheduled = false
checkRetainedInstances(reason)
}
}
...
}
ResourcePlugin参考LeakCanary旧版本,采用线程轮询检测,依据如下:
//ActivityRefWatcher.start
private void scheduleDetectProcedure() {
//检测轮询 mScanDestroyedActivitiesTask execute函数一直返回RetryableTask.Status.RETRY
mDetectExecutor.executeInBackground(mScanDestroyedActivitiesTask);
}
class RetryableTaskExecutor{
private void postToBackgroundWithDelay(final RetryableTask task, final int failedAttempts) {
//非主线程 handler
mBackgroundHandler.postDelayed(new Runnable() {
@Override
public void run() {
RetryableTask.Status status = task.execute();
if (status == RetryableTask.Status.RETRY) {
postToBackgroundWithDelay(task, failedAttempts + 1);
}
}
}, mDelayMillis);
}
}
** 2、检测泄露逻辑实现**
** LeakCanay Check检测**
原理:VM会将可回收的对象加入 WeakReference 关联的 ReferenceQueue
1)根据retainedReferenceCount > 0,触发一次gc请求,再次获取retainedReferenceCount
var retainedReferenceCount = refWatcher.retainedInstanceCount
if (retainedReferenceCount > 0) {
gcTrigger.runGc()
retainedReferenceCount = refWatcher.retainedInstanceCount
}
2)判断retainedReferenceCount 是否大于retainedVisibleThreshold(默认为5),小于则跳过接下来的检测
if (checkRetainedCount(retainedReferenceCount, config.retainedVisibleThreshold)) return
3)根据dumpHeapWhenDebugging开关和是否在Debug调试,如果配置开关开启且在调试,则延时轮询等待,调试结束
if (!config.dumpHeapWhenDebugging && DebuggerControl.isDebuggerAttached) {
showRetainedCountWithDebuggerAttached(retainedReferenceCount)
scheduleRetainedInstanceCheck("debugger was attached", WAIT_FOR_DEBUG_MILLIS)
return
}
4)dump Hprof文件
val heapDumpFile = heapDumper.dumpHeap()
if (heapDumpFile == null) {
showRetainedCountWithHeapDumpFailed(retainedReferenceCount)
return}
5)开启HeapAnalyzerService进行Hprof分析
在旧版本中,在个别系统上可能存在误报,原因大致如下:
-
VM 并没有提供强制触发 GC 的 API ,通过
System.gc()
或Runtime.getRuntime().gc()
只能“建议”系统进行 GC ,如果系统忽略了我们的 GC 请求,可回收的对象就不会被加入 ReferenceQueue -
将可回收对象加入 ReferenceQueue 需要等待一段时间,LeakCanary 采用延时 100ms 的做法加以规避,但似乎并不绝对管用
-
监测逻辑是异步的,如果判断 Activity 是否可回收时某个 Activity 正好还被某个方法的局部变量持有,就会引起误判
-
若反复进入泄漏的 Activity ,LeakCanary 会重复提示该 Activity 已泄漏
现在这个2.0-alpha-2版本也没有进行排重,当然这个也不好说,假如一个Activity有多处泄露,且泄露原因不同,排重 就会导致漏报。
ResourcePlugin Check检测
原理:直接通过WeakReference.get()
来判断对象是否已被回收,避免因延迟导致误判
1)判断当前mDestroyedActivityInfos是否空,为空的话,就没必要泄露,因为是轮询,所以要防止CPU空转,浪费电
// If destroyed activity list is empty, just wait to save power.
while (mDestroyedActivityInfos.isEmpty()) {
synchronized (mDestroyedActivityInfos) {
try {
mDestroyedActivityInfos.wait();
} catch (Throwable ignored) {
// Ignored.
}
}
}
2)根据配置开关和是否在Debug调试,如果配置开关开启且在调试,跳过此次check,等待下次轮询,调试结束
// Fake leaks will be generated when debugger is attached.
if (Debug.isDebuggerConnected() && !mResourcePlugin.getConfig().getDetectDebugger()) {
MatrixLog.w(TAG, "debugger is connected, to avoid fake result, detection was delayed.");
return Status.RETRY;
}
3)增加一个一定能被回收的“哨兵”对象,用来确认系统确实进行了GC,没有进行GC,则跳过此次check,等待下次轮询
final WeakReference<Object> sentinelRef = new WeakReference<>(new Object());
triggerGc();
if (sentinelRef.get() != null) {
// System ignored our gc request, we will retry later.
MatrixLog.d(TAG, "system ignore our gc request, wait for next detection.");
return Status.RETRY;
}
4)对已判断为泄漏的Activity,记录其类名,避免重复提示该Activity已泄漏,有效期一天
final DestroyedActivityInfo destroyedActivityInfo = infoIt.next();
if (isPublished(destroyedActivityInfo.mActivityName)) {
MatrixLog.v(TAG, "activity with key [%s] was already published.", destroyedActivityInfo.mActivityName);
infoIt.remove();
continue;
}
前面已经提过排重还是有缺陷的,比如一个Activity有多处泄露,且泄露原因不同,排重 就会导致漏报
5)若发现某个Activity无法被回收,再重复判断3次,且要求从该Activity被记录起有2个以上的Activity被创建才认为是泄漏,以防在判断时该Activity被局部变量持有导致误判
++destroyedActivityInfo.mDetectedCount;
long createdActivityCountFromDestroy = mCurrentCreatedActivityCount.get() - destroyedActivityInfo.mLastCreatedActivityCount;
if (destroyedActivityInfo.mDetectedCount < mMaxRedetectTimes
|| (createdActivityCountFromDestroy < CREATED_ACTIVITY_COUNT_THRESHOLD && !mResourcePlugin.getConfig().getDetectDebugger())) {
// Although the sentinel tell us the activity should have been recycled,
// system may still ignore it, so try again until we reach max retry times.
continue;
}
6.根据是否设置了mHeapDumper(即配置快关),若设置了,进行dumpHeap,然后开启服务CanaryWorkerService,进行shrinkHprofAndReport,否则进行简单的onDetectIssue
if (mHeapDumper != null) {
final File hprofFile = mHeapDumper.dumpHeap();
if (hprofFile != null) {
markPublished(destroyedActivityInfo.mActivityName);
final HeapDump heapDump = new HeapDump(hprofFile, destroyedActivityInfo.mKey, destroyedActivityInfo.mActivityName);
mHeapDumpHandler.process(heapDump);
infoIt.remove();
} else {
infoIt.remove();
}
} else {
markPublished(destroyedActivityInfo.mActivityName);
if (mResourcePlugin != null) {
...
mResourcePlugin.onDetectIssue(new Issue(resultJson));
}
}
4、Hprof裁剪和分析(暂时不详细分析)
LeakCanary没有对Hprof文件进行shrink裁剪,使用haha进行解析,分析出其泄露对象的GC Root引用链,把检测和分析都放在客户端。
ResourcePlugin只有检测和Hprof文件shrink功能,不支持在客户端Hprof文件,需要利用其提供的jar单独对进行分析Hprof,在分析过程中也可以把找出冗余Bitmap的GC ROOT链。
裁剪Hprof文件源码见:HprofBufferShrinker().shrink
冗余Bitmap分析器:DuplicatedBitmapAnalyzer
Activity泄露分析器:ActivityLeakAnalyzer
Hprof 文件的大小一般约为 Dump 时的内存占用大小,Dump 出来的 Hprof 大则一百多M,,如果不做任何处理直接将此 Hprof 文件上传到服务端,一方面会消耗大量带宽资源,另一方面服务端将 Hprof 文件长期存档时也会占用服务器的存储空间。
通过分析 Hprof 文件格式可知,Hprof 文件中 buffer 区存放了所有对象的数据,包括字符串数据、所有的数组等,而我们的分析过程却只需要用到部分字符串数据和 Bitmap 的 buffer 数组,其余的 buffer 数据都可以直接剔除,这样处理之后的 Hprof 文件通常能比原始文件小 1/10 以上。
LeakCanary 中的引用链查找算法都是针对单个目标设计的,ResourceCanary 中查找冗余 Bitmap 时可能找到多个结果,如果分别对每个结果中的 Bitmap 对象调用该算法,在访问引用关系图中的节点时会遇到非常多的重复访问的节点,降低了查找效率。为此我们修改了 LeakCanary 的引用链查找算法,使其在一次调用中能同时查找多个目标到 GC Root 的最短引用链。
网友评论