美文网首页
判断一棵满二叉树是否为二叉搜索树

判断一棵满二叉树是否为二叉搜索树

作者: 牛奶芝麻 | 来源:发表于2019-10-29 17:25 被阅读0次
    题目描述:

    给定一棵满二叉树,判定该树是否为二叉搜索树,是的话打印 True,不是的话打印 False。

    说明:

    • a. 二叉搜索树(Binary Search Tree),它或者是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值; 若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值; 它的左、右子树也分别为二叉搜索树。
    • b. 满二叉树,除最后一层无任何子节点外,每一层上的所有结点都有两个子结点二叉树
    • c. 树内节点数不超过 10000,非空节点值为大于 0 小于 65536 的整数,空树或空节点输入为 None
    输入描述:

    从根节点开始,逐层输入每个节点的值,空树或空节点输入为 None
    比如:10,5,15,3,7,13,18

    输出描述:

    是二叉搜索树的话打印 True,不是的话打印 False

    示例1

    输入
    10,5,15,3,7,13,18

    输出
    True

    解题思路:

    1、先处理输入数据,将输入保存在列表 list 中,注意要将字符数字转化为整数数字, 'None' 转化为 None;
    2、定义树结构,根据 list 递归构造这棵满二叉树;
    3、判断这棵满二叉树是否为二叉搜索树(BST)。

    • 第 1 步很好做,循环处理一下即可;
    • 第 2 步,根据满二叉树的性质,如果根的下标为 i,则左孩子为 2*i,右孩子为 2*i+1利用这个性质可以进行递归构造这棵二叉树;
    • 这道题的难点在于第 3 步,即如何判断一棵树为 BST 呢?刚开始我写出了这样的代码:
        def judgeBST(self, root):
            if not root:
                return True
            if root.left and root.left.val > root.val:
                return False
            if root.left and root.right.val < root.val:
                return False
            return self.judgeBST(root.left) and self.judgeBST(root.right)
    

    但是,最终通过了 90%,有一个 case 没有通过:10,5,15,3,11,13,18,把它画成满二叉树之后,它不是 BST,应该返回 False,但是上面这个代码返回了 True。分析原因发现,上述代码只能判断每棵子树满足 BST 的条件,但是全局 BST 可能就不满足了(11 > 10)。具体的错误原因可以参考下面这篇博客,写得很清楚:

    判断一棵树是否是二叉搜索树

    实际上,我们可以利用 BST 的性质:中序遍历是递增的 进行判断。

    使用中序遍历的方法实现:

    • 对树进行中序遍历,将结果保存在 temp 数组中;
    • 检测 temp 数组是否为升序排列,如果是,则为 BST,反之则不是。

    此方法还可以进一步的优化,不用 temp 数组,避免使用额外的内存开销。在中序遍历时使用一个全局变量 pre 保存前驱节点,如果当前节点的值小于前驱节点的值 pre.val,则该树不是 BST。

    完整代码 Python3 实现:
    class TreeNode:    # 定义树结构
        def __init__(self, x):
            self.val = x
            self.left = None
            self.right = None
    
    class Solution:
        
        def _input(self):    # 处理输入
            li = []
            for num in input().split(','):
                if num == 'None':
                    li.append(None)
                else:
                    li.append(int(num))
            return [0] + li    # 下标从 1 开始,便于接下来二叉树的构造
        
        def construct(self, li, pos):    # 根据列表 li 递归构造二叉树,pos 为 li 的索引位置
            if pos >= len(li) or li[pos] == None:
                return None
            node = TreeNode(li[pos])
            node.left = self.construct(li, 2*pos)
            node.right = self.construct(li, 2*pos+1)
            return node
        
        def judgeBST(self, root):    # 利用 BST 中序遍历递增的性质判断是否为 BST
            if not root:
                return True
            if not self.judgeBST(root.left):
                return False
            if self.pre != None and self.pre.val > root.val:
                return False
            self.pre = root
            if not self.judgeBST(root.right):
                return False
            return True
        
        def ans(self):    # 返回结果
            li = self._input()
            root = self.construct(li, 1)
            self.pre = None    # 全局遍历 self.pre,保存树的前驱结点
            return self.judgeBST(root)
    
    print(Solution().ans())    # 调用函数,输出结果
    

    相关文章

      网友评论

          本文标题:判断一棵满二叉树是否为二叉搜索树

          本文链接:https://www.haomeiwen.com/subject/ozegvctx.html