2018年7月16日笔记
1.conda常用命令
1.1 列出当前环境的所有库
命令:conda list
在cmd中运行命令如下图所示:
图片.png-36.6kB
1.2 管理环境
创建环境
命令:conda create -n {} python={}第一对大括号替换为环境的命名,第二对大括号替换为python的版本号
例如:conda create -n python27 python=2.7 这个命令就是创建一个python版本为2.7的环境,并命名为python27
列出所有环境
命令:conda info -e
进入环境
activate {},大括号替换为虚拟环境名
环境添加库
conda install {},大括号替换为要安装库的库名
环境删除库
conda remove {},大括号替换为要安装库的库名
删除环境
conda remove -n {} -all,大括号替换为要删除库的库名
2. 爬虫示例
爬取豆瓣钱排名前250条信息,即下图这个网页的信息。
图片.png-340.8kB
下面的sql语句用来创建数据库的表
drop database if exists douban;
create database douban;
use douban;
DROP TABLE IF EXISTS `top250`;
CREATE TABLE `top250` (
`director` varchar(100) DEFAULT NULL,
`role` varchar(100) DEFAULT NULL,
`year` varchar(100) DEFAULT NULL,
`area` varchar(20) DEFAULT NULL,
`genre` varchar(100) DEFAULT NULL,
`title` varchar(255) DEFAULT NULL
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
把豆瓣排名前250的电影信息导入mysql数据库中
下面一段代码能够成功运行的前提有两个:
1.安装库requests:pip install requests
安装库pymysql:pip install pymysql
2.修改下面代码中进入mysql数据库的用户名和密码,即修改下面这一句:
conn = pymysql.connect(host='localhost', user='root', passwd='...your password', db='douban',charset="utf8")
import requests
from bs4 import BeautifulSoup as bs
import pymysql
if __name__ == "__main__":
movieInfos = [] # 用于保存所有的电影信息
baseUrl = 'https://movie.douban.com/top250?start={}&filter='
for startIndex in range(0, 226, 25):
url = baseUrl.format(startIndex)
# 爬取网页
r = requests.get(url)
# 获取html内容
htmlContent = r.text
# 用BeautifulSoup加载html文本内容进行处理
soup = bs(htmlContent, "lxml")
# 获取到页面中索引的class名为info的标签(应该有25个)
movieList = soup.find_all("div", attrs={"class": "info"})
# 遍历25条电影信息
for movieItem in movieList:
movieInfo = {} # 创建空字典,保存电影信息
# 获取到名为class名为hd的div标签内容
hd_div = movieItem.find("div", attrs={"class": "hd"})
# 通过bd_div获取到里面第一个span标签内容
hd_infos = hd_div.find("span").get_text().strip().split("\n")
# < span class ="title" > 天堂电影院 < / span >
movieInfo['title'] = hd_infos[0]
# 获取到class名为bd的div标签内容
bd_div = movieItem.find("div", attrs={"class": "bd"})
# print(bd_div)
# 通过bd_div获取到里面第一个p标签内容
infos = bd_div.find("p").get_text().strip().split("\n")
# print(infos) #包含了两行电影信息的列表
# 获取导演和主演
infos_1 = infos[0].split("\xa0\xa0\xa0")
if len(infos_1) == 2:
# 获取导演,只获取排在第一位的导演名字
director = infos_1[0][4:].rstrip("...").split("/")[0]
movieInfo['director'] = director
# 获取主演
role = infos_1[1][4:].rstrip("...").rstrip("/").split("/")[0]
movieInfo['role'] = role
else:
movieInfo['director'] = None
movieInfo['role'] = None
# 获取上映的时间/地区/电影类型
infos_2 = infos[1].lstrip().split("\xa0/\xa0")
# 获取上映时间
year = infos_2[0]
movieInfo['year'] = year
# 获取电影地区
area = infos_2[1]
movieInfo['area'] = area
# 获取类型
genre = infos_2[2]
movieInfo['genre'] = genre
print(movieInfo)
movieInfos.append(movieInfo)
conn = pymysql.connect(host='localhost', user='root', passwd='...your password', db='douban',charset="utf8")
# 获取游标对象
cursor = conn.cursor()
# 查看结果
print('添加了{}条数据'.format(cursor.rowcount))
for movietiem in movieInfos:
director = movietiem['director']
role = movietiem['role']
year = movietiem['year']
area = movietiem['area']
genre = movietiem['genre']
title = movietiem['title']
sql = 'INSERT INTO top250 values("%s","%s","%s","%s","%s","%s")' % (director, role, year, area, genre, title)
# 执行sql
cursor.execute(sql)
# 提交
conn.commit()
print('添加了{}条数据'.format(cursor.rowcount))
插入数据库成功截图如下:
图片.png-67.2kB
2018年7月17日笔记
3.HTTP理解
3.1 HTTP请求格式
当浏览器向Web服务器发出请求时,它向服务器传递了一个数据块,也就是请求信息,HTTP请求信息由3部分组成:
1.请求方法URL协议/版本;2.请求头;3.请求体内容
图片.png-149.8kB
3.2 HTTP请求方式
常见的http请求方式有get和post
Get是比较简单的http请求,直接会将发送给web服务器的数据放在请求地址的后面,即在请求地址后使用?key1=value1&ke2=value2形式传递数据,只适合数据量少,且没有安全性的请求
Post是需要发送给web服务器的数据经过编码放到请求体中,可以传递大量数据,并且有一定安全性,常用于表单提交
4.爬取51job网站信息
爬取51job网站信息并将数据持久化为excel文件
import requests
from bs4 import BeautifulSoup as bs
import re
from urllib import parse
import pandas as pd
def cssFind(soup,cssSelector,nth=1):
if len(soup.select(cssSelector)) >= nth:
return soup.select(cssSelector)[nth-1].text
else:
return 0
def getSoup(url):
response = requests.get(url)
response.encoding = 'gbk'
soup = bs(response.text,'lxml')
return soup
def getMaxPageNumber(url):
soup = getSoup(url)
maxPageNumberBefore = cssFind(soup,"span.td")
pattern = "共(\d*)页"
maxPageNumber = re.findall(pattern,maxPageNumberBefore)[0]
return int(maxPageNumber)
def getJobList(url):
soup = getSoup(url)
webpage_job_list = soup.select("div.dw_table div.el")[1:]
job_list = []
for item in webpage_job_list:
job = {}
job['职位名'] = cssFind(item,"a").strip()
job['公司名'] = cssFind(item,"span.t2")
job['工作地点'] = cssFind(item,"span.t3")
job['薪资'] = cssFind(item,"span.t4")
job['发布时间'] = cssFind(item,"span.t5")
job_list.append(job)
return job_list
def getUrl(job,page):
url_before = "https://search.51job.com/list/020000,000000,0000,00,9,99,{},2," \
"{}.html?lang=c&stype=1&postchannel=0000&workyear=99&cotype=99&" \
"degreefrom=99&jobterm=99&companysize=99&lonlat=0%2C0&radius=-1&" \
"ord_field=0&confirmdate=9&dibiaoid=0&specialarea=00"
url = url_before.format(parse.quote(job),page)
return url
if __name__ == "__main__":
job = "人工智能"
firstPage_url = getUrl(job,1)
maxPageNumber = getMaxPageNumber(firstPage_url)
job_list = []
for i in range(1,maxPageNumber+1):
print("共有%d页,正在获取第%d页" %(maxPageNumber,i))
url = getUrl(job,i)
job_list.extend(getJobList(url))
df = pd.DataFrame(job_list,columns=job_list[0].keys())
excel_name = "51job_{}.xlsx".format(job)
df.to_excel(excel_name)
print("finished!")
5.爬取豆瓣排名前250电影信息
下面一段代码只需要修改连接mysql数据库的密码就可以运行。
sql语句写在代码中,所以代码比较长。
# coding=utf-8
from bs4 import BeautifulSoup as bs
import requests
import re
import pymysql
def cssFind(movie,cssSelector,nth=1):
if len(movie.select(cssSelector)) >= nth:
return movie.select(cssSelector)[nth-1].text.strip()
else:
return ''
def reFind(pattern,sourceStr,nth=1):
if len(re.findall(pattern,sourceStr)) >= nth:
return re.findall(pattern,sourceStr)[nth-1]
else:
return ''
def getConn(database ="pydb"):
args = dict(
host = 'localhost',
user = 'root',
passwd = '... your password',
charset = 'utf8',
db = database
)
return pymysql.connect(**args)
if __name__ == "__main__":
#连接数据库
conn = getConn("douban")
cursor = conn.cursor()
#解析网页并将每条电影信息插入mysql数据库
url_before = "https://movie.douban.com/top250?start={}"
flag = True
for i in range(0,250,25):
url = url_before.format(i)
response = requests.get(url)
response.encoding = 'utf-8'
soup = bs(response.text, 'lxml')
movie_list = soup.select("ol.grid_view li")
for movie in movie_list:
item = {}
item['title_zh'] = cssFind(movie, "span.title") #提取标题
item['title2'] = cssFind(movie, "span.title", 2).lstrip('/').strip() #提取
item['title_other'] = cssFind(movie, "span.other").lstrip('/').strip()
details = cssFind(movie, "div.bd p")
pattern_director = "导演: (.*)主"
item['director'] = reFind(pattern_director, details).strip('/...').strip()
if item['director'] == "":
item['director'] = reFind("导演: (.*)", details).strip('/...').strip()
pattern_actor = "主演: (.*)"
item['actor'] = reFind(pattern_actor, details).strip('/...').strip()
detail2 = details.split('\n')[1]
item['year'] = detail2.split('/')[0].strip()
item['country'] = detail2.split('/')[1].strip()
item['genre'] = detail2.split('/')[2].strip()
item['rating_grade'] = cssFind(movie, "span.rating_num")
item['rating_number'] = cssFind(movie, "div.star span", 4).rstrip("人评价")
item['summary'] = cssFind(movie, "span.inq")
if flag:
drop_sql = "drop table if exists movie"
cursor.execute(drop_sql)
conn.commit()
table_movie = ','.join(['`%s` varchar(200)'%key for key in item.keys()])
create_sql = "create table movie(`id` int primary key auto_increment,%s)" %table_movie
cursor.execute(create_sql)
conn.commit()
flag = False
table_field = ','.join(['`%s`'%key for key in item.keys()])
table_row = ','.join(['"%s"'%value for value in item.values()])
insert_sql = "insert into movie(%s) values(%s)"%(table_field, table_row)
print(insert_sql)
cursor.execute(insert_sql)
conn.commit()
conn.close()
网友评论