美文网首页R和R包的学习
R语言学习指南(6) 初探相关性热图

R语言学习指南(6) 初探相关性热图

作者: R语言数据分析指南 | 来源:发表于2020-12-23 23:20 被阅读0次

    相关性热图,顾名思义就是根据数据之间的相关性系数来绘制热图,可分为2类:组内相关性热图组间相关性热图

    组内相关性热图,即由一组数据内部的相关性系数绘制而成,废话不多说直接看代码

    相关性矩阵可视化

    library(tidyverse)
    library(corrplot)
    cor(mtcars) %>% corrplot(method = "circle",order = "hclust",
    type = "lower",tl.srt = 45,tl.col = "black")
    

    正相关以蓝色显示,负相关以红色显示。颜色强度和圆圈的大小与相关系数成正比

    full:显示完整的相关矩阵
    upper:显示相关矩阵的上三角
    lower:显示相关矩阵的下三角

    将相关图与显着性检验相结合

    cor.mtest( )函数计算P值

    res1 <- cor.mtest(mtcars)
    

    sig.level = -1显示所有p值

    cor(mtcars)%>% corrplot(type="lower", order="hclust",tl.srt = 45,
                            tl.col = "black",
                            p.mat = res1$p,insig = "p-value",sig.level = -1)
    

    显示不显著点的p值

    cor(mtcars)%>% corrplot(type="lower", order="hclust", 
                            p.mat = res1$p,insig = "p-value")
    

    将不显著的点用空表示

    cor(mtcars)%>% corrplot(type="lower",order="hclust",
                            p.mat = res1$p,insig = "blank")
    

    在p值> 0.05的点上打X

    cor(mtcars)%>% corrplot(type="lower",order="hclust",
                            p.mat = res1$p, sig.level = .05)
    

    在p值> 0.01的点上打X

    cor(mtcars)%>% corrplot(type="lower",order="hclust",
                            p.mat = res1$p, sig.level = .01)
    

    将p值转化为*添加于图上

    cor(mtcars) %>% corrplot(type="lower", order="hclust",
    p.mat = res1$p,insig = "label_sig",
               sig.level = c(.001, .01, .05),
               pch.cex = .9, pch.col = "white",
               tl.srt = 45,tl.col = "black")
    

    ggplot2绘制组内相关性热图

    corr.test( )会同时计算p值与相关性系数,通过for循环将p值转化为*

    library("reshape")
    library("psych")
    
    p <- corr.test(mtcars,method="pearson",adjust = "fdr")
    cor <- p$r
    pvalue <- p$p
    display <- pvalue
    l1 <- nrow(display)
    l2 <- ncol(display)
    for(i in 1:l1){
      for(k in 1:l2){
        a <- as.numeric(display[i,k])
        if(a <= 0.001){
          a <- "***"
        }
        if( 0.001 < a && a <= 0.01){
          a <- "**"
        }
        if(0.01 < a && a < 0.05){
          a <- "*"
        }
        if(a >= 0.05){
          a <- ""
        }
        display[i,k] <- a
      }
    }
    

    构建ggplot2绘图文件并导出

    heatmap <- melt(cor) %>% rename(replace=c("X1"="sample1","X2"="sample2",
                                   "value"="cor")) %>%
      mutate(pvalue=melt(pvalue)[,3]) %>%
      mutate(display=melt(display)[,3])
    
    write.table(heatmap,file ="heatmap.xls",sep ="\t",row.names = F)    
    

    ggplot2可视化

    ggplot(heatmap,aes(sample1,sample2,fill=cor))+
      geom_tile()+
      theme_minimal()+
      scale_fill_distiller(palette = "Spectral")+
      geom_text(aes(label=display),size=5,color="white")+
      scale_y_discrete(position="left")+xlab(NULL) + ylab(NULL)+
      labs(fill ="expr")
    

    下一节再谈组间相关性热图

    相关文章

      网友评论

        本文标题:R语言学习指南(6) 初探相关性热图

        本文链接:https://www.haomeiwen.com/subject/paeunktx.html