数据结构与算法系列——链表详解

作者: KEEPINUP | 来源:发表于2019-03-03 22:08 被阅读2次

上次我们简单的对比了一下数组和链表的区别和各自的优缺点,今天我们来详细看一下链表这个结构。
链表的结构五花八门,我们几天主要看一下三种最常用的链表结构:单链表、双向链表和循环列表

  • 单链表

我们首先来看一下最简单、最常用的单链表。前边我们已经知道链表是通过指针将一些分散的内存块连接到一起。其中,我们把每个内存块叫做链表的一个结点。为了将每个结点连接到一起,每个结点不仅存储数据,而且还需要记录下一个结点的地址。我们把这个记录下一个结点的指针称为后继指针next。我们通过下边示意图来更形象的了解一下。

image.png

从图中我们可以看到,单链表是单方向顺序的一个线性表。其中有两个结点比较特殊,分别是第一个和最后一个结点。我们通常把第一个结点叫做头结点,最后一个结点叫做尾结点,头结点用来记录链表的基地址,这样我们就可以遍历得到整个结点,尾结点是最后一个结点,它的指针指向一个空地址NULL,这样我们通过判断后继指针next是不是NULL来确定某个结点是不是尾结点。
前边我们在数组和链表中已经详细介绍了链表的插入和删除,在这里我们不做过多的描述,而是通过示意图的方式更清楚的了解。针对链表的插入和删除操作,我们只需要考虑相邻结点的指针改变,所以对应的时间复杂度为O(1)。

image.png
  • 双向链表

单链表只有一个指针,每个结点都只有一个后继指针next指向下一个结点的地址。而双向链表,顾名思义,它有两个方向,所以每个结点不仅有一个指向下一个结点的后继指针next,还有一个指向前一个结点的前驱结点prev。同样我们通过示意图来看一下。

image.png

从图中我们看到,与单链表相比,双向链表的每个结点还需要存储指向前一个结点的指针,所以,同样多的数据,双向链表比单链表需要更多的存储空间。两个指针虽然比较浪费空间,但是双向链表可以双向遍历,灵活性更高。
双向链表在删除、插入结点上更加高效,前边我们讲过单链表的删除和插入操作的时间复杂度为O(1),但是双向链表的为什么会更高效呢,因为单链表的分析只是理论上得到的,但是实际情况中是不准确的,是需要前提条件的。
下面我们分析一下实际情况中的操作。我们先来看插入操作,实际情况中的插入操作可以分为这两种情况:

  1. 在值等于某个指定值的结点前或者后插入结点
  2. 在给定指针后边插入结点

对于第一种情况,不管是单链表还是双向链表,都需要从头一个一个遍历直到找到特定值的结点,然后执行插入操作虽然插入的时间复杂度为O(1),但是遍历的时间复杂度为O(n),所以在值等于某个指定值的结点前或者后插入结点的时间复杂度为O(n)。
对于第二种情况,我们通过给定指针可以直到插入结点的位置,但是我们需要直到给定指针的前驱结点,如果是单链表,我们依然需要通过从头开始遍历找到前驱结点,需要的时间复杂度为O(n),但是对于双向链表就简单多了,我们只需要通过前驱结点的指针就能得到前驱结点,需要的时间复杂度为O(1)。
同理,参照我们上边插入操作的分析,删除结点双向链表同样比单链表灵活得多。
还有就是在有序链表中,双向链表的按值查询也比单链表也快一些,因为我们可以记录上次查找的位置x,然后通过比较查询值x的大小来决定向前还是向后,可以比单链表节省时间。
通过上边单链表和双向链表的比较,我们有学习了灵位一个非常重要的知识点,那就是用空间换时间的思想,当内存空间充足时,如果我们对执行效率有更高的要求,可以用牺牲内存而换取效率的办法,也就是选择空间复杂度相对比较高,但是时间复杂度低的算法或者数据结构(实际应用中,缓存就是利用空间换时间的思想)。相反,如果内存比较紧张,我们就可以用时间换空间的算法或数据结构。

  • 循环链表

循环链表一种特殊的单链表,与单链表唯一的区别就是,循环链表的尾结点的指针指向头结点而不是指向空地址。如下示意图所示。


image.png

和单链表相比,循环列表的优点就是从链尾到链头比较方便。比如需要处理的数据具有环形结构特点时,用循环列表就非常合适。虽然单链表也可以实现,但是循环链表的代码要简洁的多。

链表的应用

我们已经学习了三种简单且最常见的链表,那么链表在实际的应用中是怎么用的呢?一个经典的链表使用场景就是LRU缓存淘汰法
缓存的大小有限,但缓存的空间被用满的时候,我们该把哪些数据清除出去呢?LRU缓存淘汰法就是其中的一种策略,把最近最少用的数据清除出去。
那用链表怎么实现这个算法呢,下边我们来看一下基于单链表的Java实现。

package linked.singlelist;


import java.util.Scanner;

/**
 * 基于单链表LRU算法(java)
 *
 */
public class LRUBaseLinkedList<T> {

    /**
     * 头结点
     */
    private SNode<T> headNode;

    /**
     * 链表长度
     */
    private Integer length;

    /**
     * 链表容量
     */
    private Integer capacity;

    public LRUBaseLinkedList(Integer capacity) {
        this.headNode = new SNode<>();
        this.capacity = capacity;
        this.length = 0;
    }

    public void add(T data) {
        SNode preNode = findPreNode(data);

        // 链表中存在,删除原数据,再插入到链表的头部
        if (preNode != null) {
            deleteElemOptim(preNode);
            intsertElemAtBegin(data);
        } else {
            if (length >= this.capacity) {
                //删除尾结点
                deleteElemAtEnd();
            }
            intsertElemAtBegin(data);
        }
    }

    /**
     * 删除preNode结点下一个元素
     *
     * @param preNode
     */
    private void deleteElemOptim(SNode preNode) {
        SNode temp = preNode.getNext();
        preNode.setNext(temp.getNext());
        temp = null;
        length--;
    }

    /**
     * 链表头部插入结点
     *
     * @param data
     */
    private void intsertElemAtBegin(T data) {
        SNode next = headNode.getNext();
        headNode.setNext(new SNode(data, next));
        length++;
    }

    /**
     * 获取查找到元素的前一个结点
     *
     * @param data
     * @return
     */
    private SNode findPreNode(T data) {
        SNode node = headNode;
        while (node.getNext() != null) {
            if (data.equals(node.getNext().getElement())) {
                return node;
            }
            node = node.getNext();
        }
        return null;
    }

    /**
     * 删除尾结点
     */
    private void deleteElemAtEnd() {
        SNode ptr = headNode;
        // 空链表直接返回
        if (ptr.getNext() == null) {
            return;
        }

        // 倒数第二个结点
        while (ptr.getNext().getNext() != null) {
            ptr = ptr.getNext();
        }

        SNode tmp = ptr.getNext();
        ptr.setNext(null);
        tmp = null;
        length--;
    }

    private void printAll() {
        SNode node = headNode.getNext();
        while (node != null) {
            System.out.print(node.getElement() + ",");
            node = node.getNext();
        }
        System.out.println();
    }

    public class SNode<T> {

        private T element;

        private SNode next;

        public SNode(T element) {
            this.element = element;
        }

        public SNode(T element, SNode next) {
            this.element = element;
            this.next = next;
        }

        public SNode() {
            this.next = null;
        }

        public T getElement() {
            return element;
        }

        public void setElement(T element) {
            this.element = element;
        }

        public SNode getNext() {
            return next;
        }

        public void setNext(SNode next) {
            this.next = next;
        }
    }

    public static void main(String[] args) {
        LRUBaseLinkedList list = new LRUBaseLinkedList();
        Scanner sc = new Scanner(System.in);
        while (true) {
            list.add(sc.nextInt());
            list.printAll();
        }
    }
}

欢迎关注公众号:「努力给自己看」

公众号200x200

相关文章

网友评论

    本文标题:数据结构与算法系列——链表详解

    本文链接:https://www.haomeiwen.com/subject/pfqvuqtx.html