import tensorflow as tf
input1=tf.placeholder(tf.float32)
input2=tf.placeholder(tf.float32)
output=tf.multiply(input1,input2)
with tf.Session() as sess:
print(sess.run(output,feed_dict={input1:[7],input2:[2]}))
[14.]
tf.placeholder(dtype, shape=None, name=None)
此函数可以理解为形参,用于定义过程,在执行的时候再赋具体的值
参数:
dtype:数据类型。常用的是tf.float32,tf.float64等数值类型
shape:数据形状。默认是None,就是一维值,也可以是多维,比如[2,3], [None, 3]表示列是3,行不定
name:名称。
然后此处的feed_dict 就是对应的,对形参进行赋值。
网友评论