美文网首页
OpenGL ES-光照计算(代码实现)

OpenGL ES-光照计算(代码实现)

作者: Tobesky | 来源:发表于2019-06-19 18:07 被阅读0次

    顶点着色器代码

    #version 300 es
    
    layout(location = 0) in vec3 position;  //顶点
    layout(location = 1) in vec3 normal;    //法向量
    layout(location = 2) in vec2 texCoord;  //纹理坐标
    
    uniform mat4 view;
    uniform mat4 projection;
    
    out vec3 outNormal; //法向量
    out vec3 FragPo;    //顶点在世界坐标位置
    out vec2 outTexCoord;//纹理坐标
    
    void main()
    {
    
        FragPo = position;
        outNormal = normal;
        outTexCoord = texCoord;
        gl_Position = projection * view * vec4(position,1.0);
        
    }
    

    片元着色器代码

    #version 300 es
    
    precision mediump float;
    out vec4 FragColor;
    
    uniform vec3 lightColor;    //光源颜色
    uniform vec3 lightPo;       //光源位置
    uniform vec3 viewPo;        //视角位置
    uniform sampler2D Texture;          //物体纹理
    uniform sampler2D specularTexture;  //镜面纹理
    
    in vec2 outTexCoord;    //纹理坐标
    in vec3 outNormal;      //顶点法向量
    in vec3 FragPo;         //顶点坐标
    

    点光源版本

    void pointLight(){
        
        float ambientStrength = 0.3;    //环境因子
        float specularStrength = 2.0;   //镜面强度
        float reflectance = 256.0;      //反射率
    
        float constantPara = 1.0f;     //距离衰减常量
        float linearPara = 0.09f;      //线性衰减常量
        float quadraticPara = 0.032f;  //二次衰减常量
    
        //环境光 = 环境因子 * 物体的材质颜色
        vec3 ambient = ambientStrength * texture(Texture,outTexCoord).rgb;
    
        //漫反射
        vec3 norm = normalize(outNormal);
        //当前顶点 至 光源的的单位向量
        vec3 lightDir = normalize(lightPo - FragPo);
        //DiffuseFactor=光源与法线夹角 max(0,dot(N,L))
        float diff = max(dot(norm,lightDir),0.0);
        //漫反射光颜色计算 = 光源的漫反射颜色 * 物体的漫发射材质颜色 * DiffuseFactor
        vec3 diffuse = diff * lightColor*texture(Texture,outTexCoord).rgb;
    
        //镜面反射
        vec3 viewDir = normalize(viewPo - FragPo);
        // reflect (genType I, genType N),返回反射向量
        vec3 reflectDir = reflect(-lightDir,outNormal);
        //SpecularFactor = power(max(0,dot(N,H)),shininess)
        float spec = pow(max(dot(viewDir, reflectDir),0.0),reflectance);
        //镜面反射颜色 = 光源的镜面光的颜色 * 物体的镜面材质颜色 * SpecularFactor
        vec3 specular = specularStrength * spec * texture(specularTexture,outTexCoord).rgb;
    
        //衰减因子计算
        float LFDistance = length(lightPo - FragPo);
        //衰减因子 =  1.0/(距离衰减常量 + 线性衰减常量 * 距离 + 二次衰减常量 * 距离的平方)
        float lightWeakPara = 1.0/(constantPara + linearPara * LFDistance + quadraticPara * (LFDistance*LFDistance));
        
        //光照颜色 =(环境颜色 + 漫反射颜色 + 镜面反射颜色)* 衰减因子
        vec3 res = (ambient + diffuse + specular)*lightWeakPara;
    
        //最终输出的颜色
        FragColor = vec4(res,1.0);
    
    }
    

    平行光版本

    void parallelLight(){
      
        float ambientStrength = 0.3;    //环境因子
        float specularStrength = 2.0;   //镜面强度
        float reflectance = 256.0;      //反射率
    
        //平行光方向
        vec3 paraLightDir = normalize(vec3(-0.2,-1.0,-0.3));
    
        //环境光 = 环境因子 * 物体的材质颜色
        vec3 ambient = ambientStrength * texture(Texture,outTexCoord).rgb;
    
        //漫反射
        vec3 norm = normalize(outNormal);
        //当前顶点至光源的的单位向量
        vec3 lightDir = normalize(lightPo - FragPo);
        //DiffuseFactor=光源与paraLightDir 平行光夹角 max(0,dot(N,L))
        float diff = max(dot(norm,paraLightDir),0.0);
        //漫反射光颜色计算 = 光源的漫反射颜色 * 物体的漫发射材质颜色 * DiffuseFactor
        vec3 diffuse = diff * lightColor * texture(Texture,outTexCoord).rgb;
    
        //镜面反射
        vec3 viewDir = normalize(viewPo - FragPo);
        // reflect (genType I, genType N),返回反射向量 -paraLightDir平行光
        vec3 reflectDir = reflect(-paraLightDir,outNormal);
        //SpecularFactor = power(max(0,dot(N,H)),shininess)
        float spec = pow(max(dot(viewDir, reflectDir),0.0),reflectance);
        //镜面反射颜色 = 光源的镜面光的颜色 * 物体的镜面材质颜色 * SpecularFactor
        vec3 specular = specularStrength * spec * texture(specularTexture,outTexCoord).rgb;
    
        //距离衰减常量
        float constantPara = 1.0f;
        //线性衰减常量
        float linearPara = 0.09f;
        //二次衰减常量
        float quadraticPara = 0.032f;
        //衰减因子计算
        float LFDistance = length(lightPo - FragPo);
        //衰减因子 =  1.0/(距离衰减常量 + 线性衰减常量 * 距离 + 二次衰减常量 * 距离的平方)
        float lightWeakPara = 1.0/(constantPara + linearPara * LFDistance + quadraticPara * (LFDistance*LFDistance));
    
        //光照颜色 =(环境颜色 + 漫反射颜色 + 镜面反射颜色)* 衰减因子
        vec3 res = (ambient + diffuse + specular)*lightWeakPara;
        
        //最终输出的颜色
        FragColor = vec4(res,1.0);
    }
    

    聚光版本

    void Spotlight(){
       
        float ambientStrength = 0.3;    //环境因子
        float specularStrength = 2.0;   //镜面强度
        float reflectance = 256.0;      //反射率
    
        //环境光 = 环境因子 * 物体的材质颜色
        vec3 ambient = ambientStrength * texture(Texture,outTexCoord).rgb;
    
        //漫反射
        vec3 norm = normalize(outNormal);
        vec3 lightDir = normalize(lightPo - FragPo);    //当前顶点 至 光源的的单位向量
        //DiffuseFactor=光源与paraLightDir lightDir夹角 max(0,dot(N,L))
        float diff = max(dot(norm,lightDir),0.0);   //光源与法线夹角
        //漫反射光颜色计算 = 光源的漫反射颜色 * 物体的漫发射材质颜色 * DiffuseFactor
        vec3 diffuse = diff * lightColor*texture(Texture,outTexCoord).rgb;
    
        //镜面反射
        vec3 viewDir = normalize(viewPo - FragPo);
         // reflect (genType I, genType N),返回反射向量
        vec3 reflectDir = reflect(-lightDir,outNormal);
        //SpecularFactor = power(max(0,dot(N,H)),shininess)
        float spec = pow(max(dot(viewDir, reflectDir),0.0),reflectance);
        //镜面反射颜色 = 光源的镜面光的颜色 * 物体的镜面材质颜色 * SpecularFactor
        vec3 specular = specularStrength * spec * texture(specularTexture,outTexCoord).rgb;
    
        float constantPara = 1.0f;    //距离衰减常量
        float linearPara = 0.09f;     //线性衰减常量
        float quadraticPara = 0.032f; //二次衰减常量
        
        //衰减因子计算
        float LFDistance = length(lightPo - FragPo);
        //衰减因子 =  1.0/(距离衰减常量 + 线性衰减常量 * 距离 + 二次衰减常量 * 距离的平方)
        float lightWeakPara = 1.0/(constantPara + linearPara * LFDistance + quadraticPara * (LFDistance*LFDistance));
    
        //聚光灯切角 (一些复杂的计算操作 应该让CPU做,提高效率,不变的量也建议外部传输,避免重复计算)
        float inCutOff = cos(radians(10.0f));
        float outCutOff = cos(radians(15.0f));
        vec3 spotDir = vec3(-1.2f,-1.0f,-2.0f);
        
        //聚光灯因子 = clamp((外环的聚光灯角度cos值 - 当前顶点的聚光灯角度cos值)/(外环的聚光灯角度cos值- 内环聚光灯的角度的cos值),0,1);
        float theta = dot(lightDir,normalize(-spotDir));
        //(外环的聚光灯角度cos值- 内环聚光灯的角度的cos值)
        float epsilon  = inCutOff - outCutOff;
        //(外环的聚光灯角度cos值 - 当前顶点的聚光灯角度cos值) / (外环的聚光灯角度cos值- 内环聚光灯的角度的cos值)
        float intensity = clamp((theta - outCutOff)/epsilon,0.0,1.0);
        vec3 res = (ambient + diffuse + specular)*intensity*lightWeakPara;
    
        FragColor = vec4(res,1.0);
    }
    

    GLKit层部分核心代码

    设置VBO

    // 顶点坐标/法线坐标/纹理坐标
    glGenBuffers(1, &VBO);
    glBindBuffer(GL_ARRAY_BUFFER, VBO);
    glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);
        
    glEnableVertexAttribArray(0);
    glEnableVertexAttribArray(1);
    glEnableVertexAttribArray(2);
        
    glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 8*sizeof(float), (void*)NULL);
    glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 8*sizeof(float), (void*)(3*sizeof(float)));
    glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, 8*sizeof(float), (void*)(6*sizeof(float)));
    

    渲染

    glEnable(GL_DEPTH_TEST);
    
    glClearColor(1.0, 0.0, 0.0, 1.0);
    glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
    glViewport(0, 0, self.frame.size.width, self.frame.size.height);
    
    //光照颜色->片元/顶点着色器
    glUniform3f(glGetUniformLocation(program, "lightColor"), 1.0f, 1.0f, 1.0f);
    
    //投影矩阵->顶点着色器
    float aspect = (float)self.bounds.size.width / (float)self.bounds.size.height;
    GLKMatrix4 projectionMatrix =  GLKMatrix4MakePerspective(GLKMathRadiansToDegrees(45.0f), aspect, 0.1f, 800.0f) ;
    glUniformMatrix4fv(glGetUniformLocation(program, "projection"), 1, GL_FALSE, (GLfloat*)projectionMatrix.m);
    
    
    //模型视图矩阵-->顶点着色器
    float radius = 10.0f;
    float camX = sin(CACurrentMediaTime()) * radius;
    float camZ = cos(CACurrentMediaTime()) * radius;
    GLKVector3 viewPo = {camX,camX,camZ};
    //获取世界坐标系去模型矩阵中.
    /*
     LKMatrix4 GLKMatrix4MakeLookAt(float eyeX, float eyeY, float eyeZ,
     float centerX, float centerY, float centerZ,
     float upX, float upY, float upZ)
     等价于 OpenGL 中
     void gluLookAt(GLdouble eyex,GLdouble eyey,GLdouble eyez,GLdouble centerx,GLdouble centery,GLdouble centerz,GLdouble upx,GLdouble upy,GLdouble upz);
     
     目的:根据你的设置返回一个4x4矩阵变换的世界坐标系坐标。
     参数1:眼睛位置的x坐标
     参数2:眼睛位置的y坐标
     参数3:眼睛位置的z坐标
     第一组:就是脑袋的位置
     
     参数4:正在观察的点的X坐标
     参数5:正在观察的点的Y坐标
     参数6:正在观察的点的Z坐标
     第二组:就是眼睛所看物体的位置
     
     参数7:摄像机上向量的x坐标
     参数8:摄像机上向量的y坐标
     参数9:摄像机上向量的z坐标
     第三组:就是头顶朝向的方向(因为你可以头歪着的状态看物体)
     */
    
    GLKMatrix4 view1 = GLKMatrix4MakeLookAt(camX,camX,camZ,0,0,0,0,1,0);
    view1 = GLKMatrix4Scale(view1, 5.0f, 5.0f, 5.0f);
    glUniformMatrix4fv(glGetUniformLocation(program, "view"), 1, GL_FALSE, (GLfloat *)view1.m);
    
    //光源位置
    glUniform3f(glGetUniformLocation(program, "lightPo"), lightPo.x, lightPo.y, lightPo.z);
    
    //观察者位置
    glUniform3f(glGetUniformLocation(program, "viewPo"), viewPo.x, viewPo.y, viewPo.z);
    
    glDrawArrays(GL_TRIANGLES, 0, 36);
    [context presentRenderbuffer:GL_RENDERBUFFER];
    

    相关文章

      网友评论

          本文标题:OpenGL ES-光照计算(代码实现)

          本文链接:https://www.haomeiwen.com/subject/pkqlqctx.html