美文网首页
【演奏的船长】数据分析学习记录W16——数据库基础概念及相关关系

【演奏的船长】数据分析学习记录W16——数据库基础概念及相关关系

作者: 演奏的船长 | 来源:发表于2019-07-21 15:13 被阅读0次

本周继续了解了数据库的基础知识,从数月前刚开始接触数据库的一个问题出发——“ODS是什么?”,找到了以下关键词的定义、描述及相关关系,建立了框架性认知,现记录如下。

最简表达
  • DB(Database)数据库——这里一般指的就是OLTP数据库,在线事物数据库,用来支持生产的,比如超市的买卖系统。DB保留的是数据信息的最新状态,只有一个状态!比如,每天早上起床洗脸照镜子,看到的就是当时的状态,至于之前的每天的状态,不会出现的你的眼前,这个眼前就是db。
  • DW(Data Warehouse)数据仓库——这里保存的是DB中的不同时间点的状态,比如,每天早上洗完照镜子时,都拍一张照片,天天这样,这些照片放入到一个相册中,之后就可以查看每一天的状态了,这个相册就是数据仓库,他保存的是数据在不同时间点的状态,对同一个数据信息,保留不同时间点的状态,就便于我们做统计分析了。
  • ETL(Extraction-Transformation-Loading)数据抽取——用于完成DB到DW的数据转存,它将DB中的某一个时间点的状态,“抽取”出来,根据DW的存储模型要求,“转换”一下数据格式,然后再“加载”到DW的一个过程,这里需要强调的是,DB的模型是ER模型,遵从范式化设计原则,而DW的数据模型是雪花型结构或者星型结构,用的是面向主题,面向问题的设计思路,所以DB和DW的模型结构不同,需要进行转换。

  • ODS(Operational Data Store) 操作性数据——是作为DB到DW的一种过渡,ODS的数据结构一般与数据来源保持一致,便于减少ETL的工作复杂性,而且ODS的数据周期一般比较短。ODS的数据最终流入DW

  • DM(Data Mining)数据挖掘——这个挖掘,不是简单的统计了,他是根据概率论的或者其他的统计学原理,将DW中的大数据量进行分析,找出我们不能直观发现的规律,比如,如果我们每天早上照相,量身材的时候,还记录下头一天吃的东西,黄瓜,猪腿,烤鸭,以及心情,如果记录上10年,形成了3650天的相貌和饮食心情的数据,我们每个人都记录,有20万人记录了,那么,我们也许通过这些记录,可以分析出,身材相貌和饮食的客观规律。

  • OLAP(On-Line Analytical Processing)——在线分析系统,简单说就是报表系统,销售报表,统计报表,等等,这个大家都熟悉,当然,OLAP的统计要更复杂更丰富一些,比如切面,钻取等等。 用数据分析软件,如Tableau等连上数据库就可以实现这种效果。

  • BI(Business Intelligence)商业智能——领导,决策者,在获取了OLAP的统计信息,和DM得到的科学规律之后,对生产进行适当的调整,比如,命令超市人员将啤酒喝尿布放在一起销售(PS.这只是传说),这就反作用于DB修改存货数据了——这就是整个BI的作用!

结合业务1 结合业务2

概括来说,是 DB-ETL-ODS-DW-OLAP-DM-BI的流转过程。

相关文章

网友评论

      本文标题:【演奏的船长】数据分析学习记录W16——数据库基础概念及相关关系

      本文链接:https://www.haomeiwen.com/subject/plimlctx.html