美文网首页LatexLaTeX
15LaTeX学习系列之---LaTeX里插入数学公式

15LaTeX学习系列之---LaTeX里插入数学公式

作者: 张一根 | 来源:发表于2019-03-06 15:17 被阅读0次

    目录

    [TOC]

    本系列是有关LaTeX的学习系列,共计19篇,本章节是第15篇。
    前一篇:14LaTeX学习系列之---LaTeX的浮动体
    后一篇:16LaTeX学习系列之---LaTeX数学公式的补充
    总目录:19LaTeX学习系列之---LaTeX的总结

    前言

    写技术类的文档,免不了需要插入数学公式,今天我们学习的是在LaTeX里插入数学公式

    (一)常用的数学公式命令

    ==1.上下标==

    上标 a^{2x+3} a^{2x+3}
    下标 a_{2x+3} a_{2x+3}

    ==2.矢量==

    单符号矢量 \vec a \vec a
    多符号矢量 \overrightarrow{xy} \overrightarrow{xy}

    ==3.括号==

    小括号 () ()
    中括号 [] []
    尖括号 \langle{}\rangle \langle{}\rangle
    花括号 \{ \} \{ \}
    适应中括号 \left( ……\right) \left( \right)
    适应花括号 \left{……\right} \left\{ \right\}
    上括号 \overbrace \overbrace {1,2,3……}
    下括号 \underbrace \underbrace{1, 2, 3……}

    注:适应是指根据括号里面的内容,来确定括号的大小。

    ==4.符号关系==

    加减 \pm \pm
    \times \times
    \div \div
    不等于 \neq \neq
    约等于 \approx \approx
    恒等于 \equiv \equiv
    大于等于 \geq \geq
    小于等于 \leq \leq
    相似 \sim \sim
    正比于 \propto \propto
    垂直 \perp \perp
    弧度 \overset{\frown} {AB} \overset{\frown} {AB}
    上划线 \overline{} \overline{1 2 3}

    ==5.三角形符号==

    三角形符号 \Delta \Delta
    夹角 \angle \angle{ABC}
    角度 ^\circ \sin60^\circ
    分度 '$ $ 59'$$

    ==6.求和与累积==

    求累加 \sum \sum_{i=0}^{n}a
    求极限 \lim_{x \to 0} \lim_{x \to 0}
    求累积 \prod_{i=1}^n x_i \prod_{i=1}^n x_i
    求导数 x\prime x\prime

    ==7.积分与微分==

    求积分 \int_{0}^\infty{fxdx} \int_{0}^\infty{fxdx}
    闭合曲线 \oint_{C} x^3, dx + 4y^2, dy \oint_{C} x^3\, dx + 4y^2\, dy
    求二重积分 \iint_{D}^{W} , dx,dy \iint_{D}^{W} \, dx\,dy
    求三重积分 \iiint_{E}^{V} , dx,dy,dz \iiint_{E}^{V} \, dx\,dy\,dz
    微分符号 \nabla \nabla
    求微分 \mathrm{d}x \mathrm{d}x
    求偏微分 \partial x \partial x
    求一阶微分 \dot x \dot x
    求二阶微分 \ddot xy \ddot y

    ==8.根号与分式==

    根号 \sqrt[x]{y} \sqrt[3]{2x+3}
    分式 \frac {分子}{分母} \frac{2x+3}{3y-5}

    注:在根号里,\sqrt[]{} 中的[]号是可选的,默认是开二次方。

    ==9.集合==

    全部符号 \forall \forall
    存在符号 \exists \exists
    属于 \in \in
    反属于 \ni \ni
    不属于 \not\in \not\in
    不反属于 \not\ni \not\ni
    包含 \supset \supset
    包含于 \subset \subset
    包含有等于 \supseteq \supseteq
    包含于有等于 \subseteq \subseteq
    交集 \cap \cap
    大号交集 \bigcap \bigcap
    并集 \cup \cup
    大号并集 \bigcup \bigcup
    空集 \emptyset \emptyset
    大号空集 \varbnothing \varnothing

    ==10.逻辑与箭头符号==

    取反符号 \lnot q \lnot q
    向左短箭头 \leftarrow \leftarrow
    向右短箭头 \rightarrow \rightarrow
    双向短箭头 \leftrightarrow \leftrightarrow
    向左长箭头 \longleftarrow \longleftarrow
    向右长箭头 \longrightarrow \longrightarrow
    双向长箭头 \longleftrightarrow \longleftrightarrow
    向左双短箭头 \Leftarrow \Leftarrow
    向右双短箭头 \Rightarrow \Rightarrow
    双向双短箭头 \Leftrightarrow \Leftrightarrow
    向左双长箭头 \Longleftarrow \Longleftarrow
    向右双长箭头 \Longrightarrow \Longrightarrow
    双向双长箭头 \Longleftrightarrow \Longleftrightarrow

    ==11.空格==

    小括号 a \ b a\ b
    4个字符括号 a\quad b a\quad b

    ==12.矩阵==

    (1)基本用法:

    \begin{matrix}
    0&1& 2 \\
    4& 5& 6\\
    7& 8 &9 
    \end{matrix}
    

    \begin{matrix}0&1& 2 \\ 4& 5& 6\\ 7& 8 &9 \end{matrix}

    只需要修改matrix环境就可以变为有边框矩阵

    (2)普通用法

    小括号框矩阵 pmatrix \begin{pmatrix}0&1& 2 \\ 4& 5& 6\\ 7& 8 &9 \end{pmatrix}
    中括号框矩阵 bmatrix \begin{bmatrix}0&1& 2 \\ 4& 5& 6\\ 7& 8 &9 \end{bmatrix}
    大括号框矩阵 Bmatrix \begin{Bmatrix}0&1& 2 \\ 4& 5& 6\\ 7& 8 &9 \end{Bmatrix}
    单竖线框矩阵 vmatrix \begin{vmatrix}0&1& 2 \\ 4& 5& 6\\ 7& 8 &9 \end{vmatrix}
    双竖线框矩阵 Vmatrix \begin{Vmatrix}0&1& 2 \\ 4& 5& 6\\ 7& 8 &9 \end{Vmatrix}
    02.png

    (3)省略号矩阵

    1. 横向省略 \cdots
    2. 竖向省略 \vdots
    3. 斜向省略 \ddots
    $$\begin{bmatrix}
    {a_{11}}&{a_{12}}&{\cdots}&{a_{1n}}\\
    {a_{21}}&{a_{22}}&{\cdots}&{a_{2n}}\\
    {\vdots}&{\vdots}&{\ddots}&{\vdots}\\
    {a_{m1}}&{a_{m2}}&{\cdots}&{a_{mn}}\\
    \end{bmatrix}$$
    

    \begin{bmatrix} {a_{11}}&{a_{12}}&{\cdots}&{a_{1n}}\\ {a_{21}}&{a_{22}}&{\cdots}&{a_{2n}}\\ {\vdots}&{\vdots}&{\ddots}&{\vdots}\\ {a_{m1}}&{a_{m2}}&{\cdots}&{a_{mn}}\\ \end{bmatrix}

    (4)行内小矩阵

    \left(
        \begin{smallmatrix}
        x & y \\ -y & x
        \end{smallmatrix}
    \right)
    

    这是一个行内\left( \begin{smallmatrix} x & y \\ -y & x \end{smallmatrix} \right)小矩阵

    (5)array环境

    \begin{array}{c|c}
    1 & 2\\
    \hline
    0 & 1
    \end{array}
    

    \begin{array}{c|c} 1 & 2\\ \hline 0 & 1 \end{array}

    ==13.方程组==

    方程组以cases环境开头

    $$\begin{cases}
    a_1x+b_1y+c_1z=d_1\\
    a_2x+b_2y+c_2z=d_2\\
    a_3x+b_3y+c_3z=d_3\\
    \end{cases}
    $$
    

    \begin{cases} a_1x+b_1y+c_1z=d_1\\ a_2x+b_2y+c_2z=d_2\\ a_3x+b_3y+c_3z=d_3\\ \end{cases}​

    ==14.希腊字母==

    1. 总计个数:24个希腊字母表

    2. 历史原因:西方的数学家们在推导数学定理时,仍然沿用并不好写也不好记的希腊字母。所以一直沿用至今

    3. 大小写区分:大写字母的是其小写latex首字母大写后的形式

    小写 大写 latex
    \alpha \Alpha \alpha
    \beta \Beta \beta
    \gamma \Gamma \gamma
    \delta \Delta \delta
    \epsilon \Epsilon \epsilon
    \zeta \Zeta \zeta
    \nu \Nu \nu
    \xi \Xi \xi
    \omicron \Omicron \omicron
    \pi \Pi \pi
    \rho \Rho \rho
    \sigma \Sigma \sigma
    \eta \Eta \eta
    \theta \Theta \theta
    \iota \Iota \iota
    \kappa \Kappa \kappa
    \lambda \Lambda \lambda
    \mu \Mu \mu
    \tau \Tau \tau
    \upsilon \Upsilon \upsilon
    \phi \Phi \phi,(\varphi\varphi
    \chi \Chi \chi
    \psi \Psi \psi
    \omega \Omega \omega

    (二)基础知识

    1.常用公式

    数学公式分为行内公式与行间公式

    1. 行间公式:$$
    2. 带编号的行间公式:equation环境
    3. 不带编号的行间公式:\[ \]

    2.行内公式:

    1. 一对美元符号 $$
    2. 小括号:\(.... \)
    3. math环境:begin{math} ... end{math}

    3.数学函数:

    \sin{x} \sin{}
    \cos{x} \cos{}
    \tan{x} \tan{}
    \arcsin{x} \arcsin{}
    \arccos{x} \arccos{}
    \arctan{x} \arctan{}
    \ln{} \ln{}

    3.行间公式

    1. 一对双美元符号 $$$$

    2. 中括号:\[ ... \]

    3. displaymath环境:begin{displaymath}... end{displaymath}

    4. 有编号的行间公式:begin{equation}... end{equation}

    5. 无编号的行间公式:begin{equation}... end{equation}

      注意:无编号公式,需要导入amsmath宏包

    (三)实例:

    1.源代码

    % 导言区
    \documentclass{article}
    
    \usepackage{ctex}
    % equation* 与 矩阵所需的宏包
    \usepackage{amsmath}
    
    % 正文区
    \begin{document}
    \tableofcontents
    % 常用符号
    % 行间公式:$$
    % 带编号的行间公式:equation环境
    % 不带编号的行间公式:\[ \]
    
    
    \section{简介}
        \LaTeX 分为两种模式,文本模式与数学公式
        
    \section{行内公式}
    \subsection{美元符号} 
    交换律是 $a+b=b+a$ 如 $1+2=2+1$
    \subsection{小括号}
    交换律是 \(a+b=b+a\) 如 \(1+2=2+1\)
    \subsection{math环境}
    交换律是
    \begin{math}
         a+b=b+a
    \end{math}
    如
    \begin{math}
        1+2=2+1.
    \end{math}
    
    \section{上下标}
    \subsection{上标}
    $3x^2-x+2$
    
    $3x^{x+1}-x+2$
    \subsection{下标}
    $x_1+x_2=4$
    
    $x_{x+1}+x_2=4$
    
    \section{希腊字母}
    $\alpha \beta \gamma \delta \epsilon $
    
    \section{数学函数}
    $\log$
    $\sin$
    $\cos$
    $\arcsin$
    $\arccos$
    $\arctan$
    $\ln$
    
    $\sin^2x + \cos^2x = 1$
    
    $\sqrt[2]{2x+3}$
    
    $\sqrt[3]{2x-5}$
    
    \section{分式}
    \subsection{/}
    $3/4 $
    
    \subsection{\textbackslash frac\{\}\{\}}
    $\frac{8}{5}$
    
    
    \section{行间公式}
    \subsection{双美元符号}
    交换律是$$a+b=b+a $$
    如$$1+2=2+1$$
    \subsection{中括号}
    交换律是
    \[a+b=b+a\]
    如\[1+2=2+1\]
    
    \subsection{displaymath环境}
    交换律是
    \begin{displaymath}
        a+b=b+a\label{eq:no2}
    \end{displaymath}
    如
    \begin{displaymath}
        1+2=2+1
    \end{displaymath}
    
    \subsection{自动编号}
    交换律见式\ref{eq:no1}
    \begin{equation}
        a+b=b+a \label{eq:no1}
    \end{equation}
    如见公式\ref{eq:no2}
    \begin{equation}
        1+2=2+1
    \end{equation}
    
    \subsection{不自动编号}
    交换律见式
    \begin{equation*}
    a+b=b+a \label{eq:no3}
    \end{equation*}
    如见公式 \ref{eq:no3}
    \begin{equation*}
    1+2=2+1
    \end{equation*}
    
    \section{矩阵的排版}
    \subsection{矩阵的括号}
    %无括号
    \[
    \begin{matrix}
    0 & 1 \\
    1 & 0 
    \end{matrix}
    \]
    
    %小括号
    \[
    \begin{pmatrix}
    0 & 1 \\
    1 & 0 
    \end{pmatrix}
    \]
    
    %中括号
    \[
    \begin{bmatrix}
    0 & 1 \\
    1 & 0 
    \end{bmatrix}
    \]
    
    %大括号
    \[
    \begin{Bmatrix}
    0 & 1 \\
    1 & 0 
    \end{Bmatrix}
    \]
    
    % 单竖线
    \[
    \begin{vmatrix}
    0 & 1 \\
    1 & 0 
    \end{vmatrix}
    \]
    
    %双竖线
    \[
    \begin{Vmatrix}
    0 & 1 \\
    1 & 0 
    \end{Vmatrix}
    \]
    
    \subsection{矩阵的省略号}
    %\dots 横向省略号
    %\vdots 竖向省略号
    %\ddots 斜向省略号
    \[
    A = \begin{bmatrix}
    a_{11} & \dots & a_{1n}\\
    \vdots& \ddots & \vdots \\
    0 & \dots & a_{nn}
    \end{bmatrix}_{n \times n}
    \]
    
    \subsection{行内小矩阵}
    复数可用矩阵
    \begin{math}
        \left(
        \begin{smallmatrix}
        x & y \\ -y & x
        \end{smallmatrix}
        \right)
    \end{math}
    来表示
    
    \subsection{array环境}
    \[
    \begin{array}{c|c}
    1 & 2\\
    \hline
    0 & 1
    \end{array}
    \]
    
    \end{document}
    

    3.输出效果

    03.png

    本系列是有关LaTeX的学习系列,共计19篇,本章节是第15篇。
    前一篇:14LaTeX学习系列之---LaTeX的浮动体
    后一篇:16LaTeX学习系列之---LaTeX数学公式的补充
    总目录:19LaTeX学习系列之---LaTeX的总结

    作者:Mark

    日期:2019/03/06 周三

    相关文章

      网友评论

        本文标题:15LaTeX学习系列之---LaTeX里插入数学公式

        本文链接:https://www.haomeiwen.com/subject/pnatpqtx.html