python解析xml方法很多,本文介绍xml.etree.ElementTree
利用ElementTree解析XML
Python标准库中,提供了ET的两种实现。一个是纯Python实现的xml.etree.ElementTree,另一个是速度更快的C语言实现xml.etree.cElementTree。请记住始终使用C语言实现,因为它的速度要快很多,而且内存消耗也要少很多。如果你所使用的Python版本中没有cElementTree所需的加速模块,你可以这样导入模块:
try:
import xml.etree.cElementTree as ET
except ImportError:
import xml.etree.ElementTree as ET
如果某个API存在不同的实现,上面是常见的导入方式。当然,很可能你直接导入第一个模块时,并不会出现问题。请注意,自Python 3.3之后,就不用采用上面的导入方法,因为ElemenTree模块会自动优先使用C加速器,如果不存在C实现,则会使用Python实现。因此,使用Python 3.3+的朋友,只需要import xml.etree.ElementTree即可。
将XML文档解析为树(tree)
我们先从基础讲起。XML是一种结构化、层级化的数据格式,最适合体现XML的数据结构就是树。ET提供了两个对象:ElementTree将整个XML文档转化为树,Element则代表着树上的单个节点。对整个XML文档的交互(读取,写入,查找需要的元素),一般是在ElementTree层面进行的。对单个XML元素及其子元素,则是在Element层面进行的。下面我们举例介绍主要使用方法。
我们使用下面的XML文档,作为演示数据:
<?xml version="1.0"?>
<doc>
<branch name="codingpy.com" hash="1cdf045c">
text,source
</branch>
<branch name="release01" hash="f200013e">
<sub-branch name="subrelease01">
xml,sgml
</sub-branch>
</branch>
<branch name="invalid">
</branch>
</doc>
接下来,我们加载这个文档,并进行解析:
import xml.etree.ElementTree as ET
tree = ET.ElementTree(file='doc1.xml')
然后,我们获取根元素(root element):
>>> root = tree.getroot()
>>> root.tag, root.attrib
('doc', {})
没错,根元素并没有属性。与其他Element对象一样,根元素也具备遍历其直接子元素的接口:
>>> for child_of_root in root:
... print child_of_root.tag, child_of_root.attrib
...
branch {'hash': '1cdf045c', 'name': 'codingpy.com'}
branch {'hash': 'f200013e', 'name': 'release01'}
branch {'name': 'invalid'}
我们还可以通过索引值来访问特定的子元素查找需要的元素:(.text 获取标签内容)
>>> root[0].tag, root[0].text
('branch', '\n text,source\n ')
从上面的示例中,可以明显发现我们能够通过简单的递归方法(对每一个元素,递归式访问其所有子元素)获取树中的所有元素。但是,由于这是十分常见的工作,ET提供了一些简便的实现方法。
Element对象有一个iter方法,可以对某个元素对象之下所有的子元素进行深度优先遍历(DFS)。ElementTree对象同样也有这个方法。下面是查找XML文档中所有元素的最简单方法:
>>> for elem in tree.iter():
... print elem.tag, elem.attrib
...
doc {}
branch {'hash': '1cdf045c', 'name': 'codingpy.com'}
branch {'hash': 'f200013e', 'name': 'release01'}
sub-branch {'name': 'subrelease01'}
branch {'name': 'invalid'}
在此基础上,我们可以对树进行任意遍历——遍历所有元素,查找出自己感兴趣的属性。但是ET可以让这个工作更加简便、快捷。iter方法可以接受tag名称,然后遍历所有具备所提供tag的元素:
>>> for elem in tree.iter(tag='branch'):
... print elem.tag, elem.attrib
...
branch {'hash': '1cdf045c', 'name': 'codingpy.com'}
branch {'hash': 'f200013e', 'name': 'release01'}
branch {'name': 'invalid'}
支持通过XPath查找元素
使用XPath查找感兴趣的元素,更加方便。Element对象中有一些find方法可以接受Xpath路径作为参数,find方法会返回第一个匹配的子元素,findall以列表的形式返回所有匹配的子元素, iterfind则返回一个所有匹配元素的迭代器(iterator)。ElementTree对象也具备这些方法,相应地它的查找是从根节点开始的。
下面是一个使用XPath查找元素的示例:
>>> for elem in tree.iterfind('branch/sub-branch'):
... print elem.tag, elem.attrib
...
sub-branch {'name': 'subrelease01'}
上面的代码返回了branch元素之下所有tag为sub-branch的元素。接下来查找所有具备某个name属性的branch元素:
>>> for elem in tree.iterfind('branch[@name="release01"]'):
... print elem.tag, elem.attrib
...
branch {'hash': 'f200013e', 'name': 'release01'}
构建XML文档
利用ET,很容易就可以完成XML文档构建,并写入保存为文件。ElementTree
对象的write
方法就可以实现这个需求。
一般来说,有两种主要使用场景。一是你先读取一个XML文档,进行修改,然后再将修改写入文档,二是从头创建一个新XML文档。
修改文档的话,可以通过调整Element
对象来实现。请看下面的例子:
>>> root = tree.getroot()
>>> del root[2]
>>> root[0].set('foo', 'bar')
>>> for subelem in root:
... print subelem.tag, subelem.attrib
...
branch {'foo': 'bar', 'hash': '1cdf045c', 'name': 'codingpy.com'}
branch {'hash': 'f200013e', 'name': 'release01'}
在上面的代码中,我们删除了root元素的第三个子元素,为第一个子元素增加了新属性。这个树可以重新写入至文件中。最终的XML文档应该是下面这样的:
>>> import sys
>>> tree.write(sys.stdout)
<doc>
<branch foo="bar" hash="1cdf045c" name="codingpy.com">
text,source
</branch>
<branch hash="f200013e" name="release01">
<sub-branch name="subrelease01">
xml,sgml
</sub-branch>
</branch>
</doc>
请注意,文档中元素的属性顺序与原文档不同。这是因为ET是以字典的形式保存属性的,而字典是一个无序的数据结构。当然,XML也不关注属性的顺序。
从头构建一个完整的文档也很容易。ET模块提供了一个SubElement工厂函数,让创建元素的过程变得很简单:
>>> a = ET.Element('elem')
>>> c = ET.SubElement(a, 'child1')
>>> c.text = "some text"
>>> d = ET.SubElement(a, 'child2')
>>> b = ET.Element('elem_b')
>>> root = ET.Element('root')
>>> root.extend((a, b))
>>> tree = ET.ElementTree(root)
>>> tree.write(sys.stdout)
<root><elem><child1>some text</child1><child2 /></elem><elem_b /> </root>
利用iterparse
解析XML流
XML文档通常都会比较大,如何直接将文档读入内存的话,那么进行解析时就会出现问题。这也就是为什么不建议使用DOM,而是SAX API的理由之一。
我们上面谈到,ET可以将XML文档加载为保存在内存里的树(in-memory tree),然后再进行处理。但是在解析大文件时,这应该也会出现和DOM一样的内存消耗大的问题吧?没错,的确有这个问题。为了解决这个问题,ET提供了一个类似SAX的特殊工具——iterparse
,可以循序地解析XML。
接下来,为大家展示如何使用iterparse
,并与标准的树解析方式进行对比。我们使用一个自动生成的XML文档,下面是该文档的开头部分:
<?xml version="1.0" standalone="yes"?>
<site>
<regions>
<africa>
<item id="item0">
<location>United States</location> <!-- Counting locations -->
<quantity>1</quantity>
<name>duteous nine eighteen </name>
<payment>Creditcard</payment>
<description>
<parlist>
[...]
我们来统计一下文档中出现了多少个文本值为Zimbabwe的location元素。下面是使用ET.parse的标准方法:
tree = ET.parse(sys.argv[2])
count = 0
for elem in tree.iter(tag='location'):
if elem.text == 'Zimbabwe':
count += 1
print count
上面的代码会将全部元素载入内存,逐一解析。当解析一个约100MB的XML文档时,运行上面脚本的Python进程的内存使用峰值为约560MB,总运行时间问2.9秒。
请注意,我们其实不需要讲整个树加载到内存里。只要检测出文本为相应值得location元素即可。其他数据都可以废弃。这时,我们就可以用上iterparse方法了:
count = 0
for event, elem in ET.iterparse(sys.argv[2]):
if event == 'end':
if elem.tag == 'location' and elem.text == 'Zimbabwe':
count += 1
elem.clear() # 将元素废弃
print count
上面的for循环会遍历iterparse事件,首先检查事件是否为end,然后判断元素的tag是否为location,以及其文本值是否符合目标值。另外,调用elem.clear()非常关键:因为iterparse仍然会生成一个树,只是循序生成的而已。废弃掉不需要的元素,就相当于废弃了整个树,释放出系统分配的内存。
当利用上面这个脚本解析同一个文件时,内存使用峰值只有7MB,运行时间为2.5秒。速度提升的原因,是我们这里只在树被构建时,遍历一次。而使用parse的标准方法是先完成整个树的构建后,才再次遍历查找所需要的元素。
iterparse的性能与SAX相当,但是其API却更加有用:iterparse会循序地构建树;而利用SAX时,你还得自己完成树的构建工作。
网友评论