首先自定义类LSPerson
继承自NSObject
创建LSPerson对象
LSPerson *p1 = [LSPerson alloc];
断点在该行,control
+ step into
进入断点即可看到调用objc_alloc函数
,在ojbc源码中源码如下
callAlloc源码
// Call [cls alloc] or [cls allocWithZone:nil], with appropriate
// shortcutting optimizations.
static ALWAYS_INLINE id
callAlloc(Class cls, bool checkNil, bool allocWithZone=false)
{
#if __OBJC2__
if (slowpath(checkNil && !cls)) return nil;
if (fastpath(!cls->ISA()->hasCustomAWZ())) {
return _objc_rootAllocWithZone(cls, nil);
}
#endif
// No shortcuts available.
if (allocWithZone) {
return ((id(*)(id, SEL, struct _NSZone *))objc_msgSend)(cls, @selector(allocWithZone:), nil);
}
return ((id(*)(id, SEL))objc_msgSend)(cls, @selector(alloc));
}
分析alloc流程如下:
alloc流程其中slowpath
和fastpath
为宏定义,__builtin_expect
用于编译器对代码优化,减少指令跳转。这个指令是gcc引入的,作用是"允许程序员将最有可能执行的分支告诉编译器"
#define fastpath(x) (__builtin_expect(bool(x), 1))
#define slowpath(x) (__builtin_expect(bool(x), 0))
!cls->ISA()->hasCustomAWZ()
判断该类是否有自定义的allocWithZone
实现
- instanceSize源码
size_t instanceSize(size_t extraBytes) const {
if (fastpath(cache.hasFastInstanceSize(extraBytes))) {
return cache.fastInstanceSize(extraBytes);
}
size_t size = alignedInstanceSize() + extraBytes;
// CF requires all objects be at least 16 bytes.
if (size < 16) size = 16;
return size;
}
根据调试信息从缓存中读取所需开辟空间大小cache.fastInstanceSize
fastInstanceSize源码
size_t fastInstanceSize(size_t extra) const
{
ASSERT(hasFastInstanceSize(extra));
if (__builtin_constant_p(extra) && extra == 0) {
return _flags & FAST_CACHE_ALLOC_MASK16;
} else {
size_t size = _flags & FAST_CACHE_ALLOC_MASK;
// remove the FAST_CACHE_ALLOC_DELTA16 that was added
// by setFastInstanceSize
return align16(size + extra - FAST_CACHE_ALLOC_DELTA16);
}
}
__builtin_constant_p(exp)
用于在编译器判断exp是否为常量,如果是则函数的值为1,否则为0。此处exp为非常量
align16源码
static inline size_t align16(size_t x) {
return (x + size_t(15)) & ~size_t(15);
}
align16函数对变量x进行内存对齐,计算后为16的倍数,该算法是对x的二进制的后四位进行清零运算
字节对齐算法示意图-
calloc
返回开辟内存的地址指针 -
initInstanceIsa
源码 做了一件事即初始化isainitIsa
inline void
objc_object::initInstanceIsa(Class cls, bool hasCxxDtor)
{
ASSERT(!cls->instancesRequireRawIsa());
ASSERT(hasCxxDtor == cls->hasCxxDtor());
initIsa(cls, true, hasCxxDtor);
}
initIsa
源码
inline void
objc_object::initIsa(Class cls, bool nonpointer, bool hasCxxDtor)
{
ASSERT(!isTaggedPointer());
if (!nonpointer) {
isa = isa_t((uintptr_t)cls);
} else {
ASSERT(!DisableNonpointerIsa);
ASSERT(!cls->instancesRequireRawIsa());
isa_t newisa(0);
#if SUPPORT_INDEXED_ISA
ASSERT(cls->classArrayIndex() > 0);
newisa.bits = ISA_INDEX_MAGIC_VALUE;
// isa.magic is part of ISA_MAGIC_VALUE
// isa.nonpointer is part of ISA_MAGIC_VALUE
newisa.has_cxx_dtor = hasCxxDtor;
newisa.indexcls = (uintptr_t)cls->classArrayIndex();
#else
newisa.bits = ISA_MAGIC_VALUE;
// isa.magic is part of ISA_MAGIC_VALUE
// isa.nonpointer is part of ISA_MAGIC_VALUE
newisa.has_cxx_dtor = hasCxxDtor;
newisa.shiftcls = (uintptr_t)cls >> 3;
#endif
// This write must be performed in a single store in some cases
// (for example when realizing a class because other threads
// may simultaneously try to use the class).
// fixme use atomics here to guarantee single-store and to
// guarantee memory order w.r.t. the class index table
// ...but not too atomic because we don't want to hurt instantiation
isa = newisa;
}
}
自定义类非taggedPointer,且nonpointer为true,走到else分支,初始化isa_t newisa
结构体
网友评论