美文网首页蛋白结构预测生物信息杂谈
#分子模拟#同源建模从入门到精通(六)

#分子模拟#同源建模从入门到精通(六)

作者: 生信杂谈 | 来源:发表于2017-05-12 20:04 被阅读0次

    其实同源建模教程到上一篇教程就应该结束了,但是如果作为一个计算机辅助药物设计或者说是一个分子模拟人,同源建模关系到后面的结果准确与否,当然需要精益求精,所以想和大家一起学习modeller中的一些关键参数,我也是边看辩总结,希望能够和大家一起学习,共同进步,同时我们也会打开新的专题,与大家互相学习,交流。
    首先我们来回顾一下,单模板建模的比对:

    from modeller import *
    
    env = environ()
    aln = alignment(env)
    mdl = model(env, file='1bdm', model_segment=('FIRST:A','LAST:A'))
    aln.append_model(mdl, align_codes='1bdmA', atom_files='1bdm.pdb')
    aln.append(file='TvLDH.ali', align_codes='TvLDH')
    aln.align2d()
    aln.write(file='TvLDH-1bdmA.ali', alignment_format='PIR')
    aln.write(file='TvLDH-1bdmA.pap', alignment_format='PAP')
    

    File: align2d.py

    首先是建立一个环境,我们来查看到底有哪些参数可选呢?

    environ(rand_seed=-8123, restyp_lib_file='$(LIB)/restyp.lib', copy=None) 
    

    主要的选择一个是随机种子数rand_seed,其范围为-2到-50000
    所有的参数设置可以具体参考官方教程,这里和大家分享一下较为实用的参数与实例设置:

    alignment函数

    alignment.align2d():该参数已废弃,可以使用alignment.salign()进行替换。
    alignment.salign()
    如果将该函数赋给一个变量,则会输出:
    1..aln_score 输出比对得分
    2..qscorepct如果在output包含QUALITY参数,则输出百分数表示的质量得分
    alignment算法主要是进行权重矩阵,SALIGN的权重矩阵主要来自于六个功能方面。
    1.残基类型。 其主要包含两个参数,一个为rr_file为残基类型的相异矩阵,similarity_flag设置为True,那么距离的分将会被取代为相似性的分。
    2.一对残基的内部分子距离。improve_alignmentfit被用来使用计算坐标功能,如果write_fit = True设置,那么将会生成一个优化好的末尾加上_fit.pfb的结构,是否在多模板建模的时候看到过呢。fit_pdbnam = False也需要设置,否则也不会产生末尾加上_fit.pdb结构的文件。fit_on_first设置为True,那么所有的结构将会叠加到第一个模型上去
    3.侧链辅助功能
    4.二级结构类型,主要区分为螺旋,折叠与其他。
    5.局部构象
    6.用户设置的矩阵,例如设置相似性矩阵(weights_type=SIMILAR)或者距离矩阵(weights_type=DISTANCE)

    automodel函数

    assess_methods函数可以对生成模型进行一下方法进行评价:
    assess.GA341:模板和模型间的序列鉴定百分数的方法
    assess.DOPE:离散优化蛋白质能量
    assess.DOPEHR:DOPE的加强版
    assess.normalized_dope:使用DOPE标准化方法

    相关文章

      网友评论

        本文标题:#分子模拟#同源建模从入门到精通(六)

        本文链接:https://www.haomeiwen.com/subject/ppdtxxtx.html