-
贝叶斯题目要求
贝叶斯,根据所给数据,输出是否play和天气等因素的概率关系。
语言:python,系统,mac
屏幕快照 2019-05-22 上午11.15.30.png -
实现
运用公式P(A/B) = P(B/A)P(B)/P(A),单独考虑outlook属性,比如hypothesis中A-play,B-Sunny代入计算即可,然后各个属性独立,则将4个属性结果相乘,同理计算A-noplay的概率,两者比较得出结论。 -
结果图
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue May 21 19:55:47 2019
@author: xx
"""
from functools import reduce
import pandas as pd
import pprint
class Classifier():
data = None
class_attr = None
priori = {}
cp = {}
hypothesis = None
def __init__(self,filename=None, class_attr=None ):
self.data = pd.read_csv(filename, header =(0)) #列索引
self.class_attr = class_attr
'''
概率(类) = 它出现在列中的次数
__________________________________________
所有类属性的计数
'''
def calculate_priori(self):
class_values = list(set(self.data[self.class_attr])) #{'no', 'yes'},['no', 'yes']
class_data = list(self.data[self.class_attr]) #['no', 'no', 'yes', 'yes', 'yes', 'no', 'yes', 'no', 'yes', 'yes', 'yes', 'yes', 'yes', 'no']
for i in class_values: #yes , no
self.priori[i] = class_data.count(i)/len(class_data)# class_data.count(i) 5,9
print ("Priori Values: ", self.priori) #Priori Values: {'no': 0.35714285714285715, 'yes': 0.6428571428571429}
'''
P(结果|证据)= P(证据的可能性)x结果的先验概率
___________________________________________
P(证据)
'''
def get_cp(self, attr, attr_type, class_value):
data_attr = list(self.data[attr])#所有数据,每一躺分别是一个索引下的14个数据。
class_data = list(self.data[self.class_attr])#yes,no数据,['no', 'no', 'yes', 'yes', 'yes', 'no', 'yes', 'no', 'yes', 'yes', 'yes', 'yes', 'yes', 'no']
total =0
for i in range(0, len(data_attr)):# i = 0 :14,
if class_data[i] == class_value and data_attr[i] == attr_type: #class_value:yes,no,attr_type:输入的type
total+=1
#print(data_attr.count(attr_type))
#print(total)
return total/data_attr.count(attr_type) #此处公式为P(B|A) = P(A|B)/P(A),下面reduce处再乘以P(B)
'''
在这里,我们计算证据的可能性和先验的多个所有个体概率
(结果|多重证据)= P(证据1 |结果)×P(证据2 |结果)x ... x P(证据N |结果)×P(结果)
按比例缩放(多重证据)
'''
def calculate_conditional_probabilities(self, hypothesis):
for i in self.priori: #yes,no
self.cp[i] = {}
for j in hypothesis: #二重循环,第一重:最终需要比较i层循环,合适不合适的概率,第二重:4个列索引数据
self.cp[i].update({ hypothesis[j]: self.get_cp(j, hypothesis[j], i)})#字典索引hypothesis[j]:假设情况,j:Outlook,Temp,Humidity,Windy
print ("\n计算条件概率: \n")
pprint.pprint(self.cp)
def classify(self):
print ("结果: ")
for i in self.cp:
print(self.cp[i].values())
print(self.priori[i])
print (i, " ==> ", reduce(lambda x, y: x*y, self.cp[i].values())*self.priori[i])
if __name__ == "__main__":
c = Classifier(filename="new_dataset.csv", class_attr="Play" )
c.calculate_priori()
c.hypothesis = {"Outlook":'Sunny', "Temp":"Hot", "Humidity":'High' , "Windy":'t'}
c.calculate_conditional_probabilities(c.hypothesis)
c.classify()
-
Cart题目要求
决策树Cart算法,使用sklearn内置决策树函数。
屏幕快照 2019-05-30 下午5.43.44.png -
实现
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed May 29 20:11:50 2019
@author: xx
"""
# 导入库
import numpy as np # 导入numpy库
import pandas as pd
from sklearn import tree #导入sklearn的决策树模型(包括分类和回归两种)
import pydotplus #画句子的依存结构树
import graphviz
#画决策树pdf图 (DataFrame)
def tree_showpdf(data,labels):
a = data.iloc[:,:-1] #特征矩阵
b = data.iloc[:,-1] #目标变量
clf = tree.DecisionTreeClassifier() #分类决策树criterion='gini'
clf.fit(a,b) #训练
dot_data = tree.export_graphviz(clf, out_file=None,
filled=True, rounded=True, feature_names=labels,
special_characters=True)
graph = pydotplus.graph_from_dot_data(dot_data)
graph.write_pdf("tree.pdf") #保存树图tree.pdf
return clf
def change(data):
names = data.columns[:-1] #前四列索引,DataFrame
for i in names:
col = pd.Categorical(data[i])
data[i] = col.codes
print(data)
def predict(data,clf):
result = clf.predict([[2,0,0,0]])#手动输入待预测值
print("预测值:",result)
if __name__=="__main__":
data = pd.read_csv("new_dataset2.csv") #读取文件
labelsp = list(data.columns.values)
labels = labelsp[0:4]#读列索引
change(data) #转换非大小离散型为数值型
clf = tree_showpdf(data,labels) #画树图
predict(data,clf) #预测
'''
dataSet = np.array(pd.read_csv("/Users/makangbo/Desktop/new_dataset2.csv")).tolist()#读所有数据
raw_data = pd.read_csv("/Users/makangbo/Desktop/new_dataset2.csv")
data = np.array(df.loc[:,:])
labelsp = list(df.columns.values)
labels = labelsp[0:4]#读列索引
'''
-
结果图
决策树,可以根据feature直接看出来属于哪一类。
.png
-
Adaboost题目要求
弱分类器为决策树,强分类器为Adaboost。
屏幕快照 2019-05-30 下午5.43.53.png -
实现
from sklearn.model_selection import cross_val_score
from sklearn.ensemble import AdaBoostClassifier
import numpy as np # 导入numpy库
import pandas as pd
from sklearn import tree #导入sklearn的决策树模型(包括分类和回归两种)
#画决策树pdf图 (DataFrame)
def Adaboost(data):
a = data.iloc[:,:-1] #特征矩阵
b = data.iloc[:,-1] #目标变量
#设定弱分类器CART
weakClassifier=tree.DecisionTreeClassifier(max_depth=1)
#设定Adaboost强分类器
clf = AdaBoostClassifier(base_estimator=weakClassifier,algorithm='SAMME',n_estimators=1,learning_rate=0.9)
clf.fit(a,b)
print("评分:",clf.score(a,b))
return clf
def change(data):
names = data.columns[:-1] #前四列索引,DataFrame
for i in names:
col = pd.Categorical(data[i])
data[i] = col.codes
print(data)
def Predict(data,clf):
result = clf.predict([[0,1,1]])#手动输入待预测值
print("预测值:",result)
if __name__=="__main__":
data = pd.read_csv("new_dataset3.csv") #读取文件
labelsp = list(data.columns.values)
labels = labelsp[0:4]#读列索引
change(data) #转换非大小离散型为数值型
clf = Adaboost(data) #Adaboost
Predict(data,clf) #预测
-
结果图
网友评论