随着分布式服务架构的流行与普及,原来在单体应用中执行的多个逻辑操作,现在被拆分成了多个服务之间的远程调用。虽然服务化为我们的系统带来了水平伸缩的能力,然而随之而来挑战就是分布式事务问题,多个服务之间使用自己单独维护的数据库,它们彼此之间不在同一个事务中,假如A执行成功了,B执行却失败了,而A的事务此时已经提交,无法回滚,那么最终就会导致两边数据不一致性的问题;尽管很早之前就有基于两阶段提交的XA分布式事务,但是这类方案因为需要资源的全局锁定,导致性能极差;因此后面就逐渐衍生出了消息最终一致性、TCC等柔性事务
的分布式事务方案,本文主要分析的是基于消息的最终一致性方案。
普通消息的处理流程
image- 消息生成者发送消息
- MQ收到消息,将消息进行持久化,在存储中新增一条记录
- 返回ACK给生产者
- MQ push 消息给对应的消费者,然后等待消费者返回ACK
- 如果消息消费者在指定时间内成功返回ack,那么MQ认为消息消费成功,在存储中删除消息,即执行第6步;如果MQ在指定时间内没有收到ACK,则认为消息消费失败,会尝试重新push消息,重复执行4、5、6步骤
- MQ删除消息
普通消息处理存在的一致性问题
我们以订单创建为例,订单系统先创建订单(本地事务),再发送消息给下游处理;如果订单创建成功,然而消息没有发送出去,那么下游所有系统都无法感知到这个事件,会出现脏数据;
public void processOrder() {
// 订单处理(业务操作)
orderService.process();
// 发送订单处理成功消息(发送消息)
sendBizMsg ();
}
如果先发送订单消息,再创建订单;那么就有可能消息发送成功,但是在订单创建的时候却失败了,此时下游系统却认为这个订单已经创建,也会出现脏数据。
public void processOrder() {
// 发送订单处理成功消息(发送消息)
sendBizMsg ();
// 订单处理(业务操作)
orderService.process();
}
一个错误的想法
此时可能有同学会想,我们可否将消息发送和业务处理放在同一个本地事务中来进行处理,如果业务消息发送失败,那么本地事务就回滚,这样是不是就能解决消息发送的一致性问题呢?
@Transactionnal
public void processOrder() {
try{
// 订单处理(业务操作)
orderService.process();
// 发送订单处理成功消息(发送消息)
sendBizMsg ();
}catch(Exception e){
事务回滚;
}
}
消息发送的异常情况分析
可能的情况 | 一致性 |
---|---|
订单处理成功,然后突然宕机,事务未提交,消息没有发送出去 | 一致 |
订单处理成功,由于网络原因或者MQ宕机,消息没有发送出去,事务回滚 | 一致 |
订单处理成功,消息发送成功,但是MQ由于其他原因,导致消息存储失败,事务回滚 | 一致 |
订单处理成功,消息存储成功,但是MQ处理超时,从而ACK确认失败,导致发送方本地事务回滚 | 不一致 |
从上面的情况分析,我们可以看到,使用普通的处理方式,无论如何,都无法保证业务处理与消息发送两边的一致性,其根本的原因就在于:远程调用,结果最终可能为成功、失败、超时;而对于超时的情况,处理方最终的结果可能是成功,也可能是失败,调用方是无法知晓的。 笔者就曾经在项目中出现类似的情况,调用方先在本地写数据,然后发起RPC服务调用,但是处理方由于DB数据量比较大,导致处理超时,调用方在出现超时异常后,直接回滚本地事务,从而导致调用方这边没数据,而处理方那边数据却已经写入了,最终导致两边业务数据的不一致。为了保证两边数据的一致性,我们只能从其他地方寻找新的突破口。
事务消息
由于传统的处理方式无法解决消息生成者本地事务处理成功
与消息发送成功
两者的一致性问题,因此事务消息就诞生了,它实现了消息生成者本地事务与消息发送的原子性,保证了消息生成者本地事务处理成功与消息发送成功的最终一致性
问题。
事务消息处理的流程
image-
事务消息与普通消息的区别就在于消息生产环节,生产者首先预发送一条消息到MQ(这也被称为发送half消息)
-
MQ接受到消息后,先进行持久化,则存储中会新增一条状态为
待发送
的消息 -
然后返回ACK给消息生产者,此时MQ不会触发消息推送事件
-
生产者预发送消息成功后,执行本地事务
-
执行本地事务,执行完成后,发送执行结果给MQ
-
MQ会根据结果删除或者更新消息状态为
可发送
-
如果消息状态更新为
可发送
,则MQ会push消息给消费者,后面消息的消费和普通消息是一样的
注意点:由于MQ通常都会保证消息能够投递成功,因此,如果业务没有及时返回ACK结果,那么就有可能造成MQ的重复消息投递问题。因此,对于消息最终一致性的方案,消息的消费者必须要对消息的消费支持幂等,不能造成同一条消息的重复消费的情况。
事务消息异常情况分析
异常情况 | 一致性 | 处理异常方法 |
---|---|---|
消息未存储,业务操作未执行 | 一致 | 无 |
存储待发送 消息成功,但是ACK失败,导致业务未执行(可能是MQ处理超时、网络抖动等原因) |
不一致 | MQ确认业务操作结果,处理消息(删除消息) |
存储待发送 消息成功,ACK成功,业务执行(可能成功也可能失败),但是MQ没有收到生产者业务处理的最终结果 |
不一致 | MQ确认业务操作结果,处理消息(根据就业务处理结果,更新消息状态,如果业务执行成功,则投递消息,失败则删除消息) |
业务处理成功,并且发送结果给MQ,但是MQ更新消息失败,导致消息状态依旧为待发送
|
不一致 | 同上 |
支持事务消息的MQ
现在目前较为主流的MQ,比如ActiveMQ、RabbitMQ、Kafka、RocketMQ等,只有RocketMQ支持事务消息。据笔者了解,早年阿里对MQ增加事务消息也是因为支付宝那边因为业务上的需求而产生的。因此,如果我们希望强依赖一个MQ的事务消息来做到消息最终一致性的话,在目前的情况下,技术选型上只能去选择RocketMQ来解决。上面我们也分析了事务消息所存在的异常情况,即MQ存储了待发送
的消息,但是MQ无法感知到上游处理的最终结果。对于RocketMQ而言,它的解决方案非常的简单,就是其内部实现会有一个定时任务,去轮训状态为待发送
的消息,然后给producer发送check请求,而producer必须实现一个check监听器,监听器的内容通常就是去检查与之对应的本地事务是否成功(一般就是查询DB),如果成功了,则MQ会将消息设置为可发送
,否则就删除消息。
常见的问题
-
问:如果预发送消息失败,是不是业务就不执行了?
答:是的,对于基于消息最终一致性的方案,一般都会强依赖这步,如果这个步骤无法得到保证,那么最终也 就不可能做到最终一致性了。
-
问:为什么要增加一个消息
预发送
机制,增加两次发布出去消息的重试机制,为什么不在业务成功之后,发送失败的话使用一次重试机制?答:如果业务执行成功,再去发消息,此时如果还没来得及发消息,业务系统就已经宕机了,系统重启后,根本没有记录之前是否发送过消息,这样就会导致业务执行成功,消息最终没发出去的情况。
-
如果consumer消费失败,是否需要producer做回滚呢?
答:这里的事务消息,producer不会因为consumer消费失败而做回滚,采用事务消息的应用,其所追求的是高可用和最终一致性,消息消费失败的话,MQ自己会负责重推消息,直到消费成功。因此,事务消息是针对生产端而言的,而消费端,消费端的一致性是通过MQ的重试机制来完成的。
-
如果consumer端因为业务异常而导致回滚,那么岂不是两边最终无法保证一致性?
答:基于消息的最终一致性方案必须保证消费端在业务上的操作没障碍,它只允许系统异常的失败,不允许业务上的失败,比如在你业务上抛出个NPE之类的问题,导致你消费端执行事务失败,那就很难做到一致了。
由于并非所有的MQ都支持事务消息,假如我们不选择RocketMQ来作为系统的MQ,是否能够做到消息的最终一致性呢?答案是可以的。
基于本地消息的最终一致性
image基于本地消息的最终一致性
方案的最核心做法就是在执行业务操作的时候,记录一条消息数据到DB,并且消息数据的记录与业务数据的记录必须在同一个事务内完成,这是该方案的前提核心保障。在记录完成后消息数据后,后面我们就可以通过一个定时任务到DB中去轮训状态为待发送
的消息,然后将消息投递给MQ。这个过程中可能存在消息投递失败的可能,此时就依靠重试机制
来保证,直到成功收到MQ的ACK确认之后,再将消息状态更新或者消息清除;而后面消息的消费失败的话,则依赖MQ本身的重试来完成,其最后做到两边系统数据的最终一致性。基于本地消息服务
的方案虽然可以做到消息的最终一致性,但是它有一个比较严重的弊端,每个业务系统在使用该方案时,都需要在对应的业务库创建一张消息表来存储消息。针对这个问题,我们可以将该功能单独提取出来,做成一个消息服务来统一处理,因而就衍生出了我们下面将要讨论的方案。
独立消息服务的最终一致性
image独立消息服务最终一致性
与本地消息服务最终一致性
最大的差异就在于将消息的存储单独地做成了一个RPC的服务,这个过程其实就是模拟了事务消息的消息预发送过程,如果预发送消息失败,那么生产者业务就不会去执行,因此对于生产者的业务而言,它是强依赖于该消息服务的。不过好在独立消息服务支持水平扩容,因此只要部署多台,做成HA的集群模式,就能够保证其可靠性。在消息服务中,还有一个单独地定时任务,它会定期轮训长时间处于待发送
状态的消息,通过一个check补偿机制来确认该消息对应的业务是否成功,如果对应的业务处理成功,则将消息修改为可发送
,然后将其投递给MQ;如果业务处理失败,则将对应的消息更新或者删除即可。因此在使用该方案时,消息生产者必须同时实现一个check服务,来供消息服务做消息的确认。对于消息的消费,该方案与上面的处理是一样,都是通过MQ自身的重发机制来保证消息被消费。
总结:上游事务提交之后,在基于MQ的场景下就不考虑回滚了。失败的可能是由于网络、服务宕机所导致,文章中提到说业务上执行是无障碍的。如果下游服务长时间没有恢复,那么就应该设置告警,在这里有几种机制来解决一些牛皮癣类型的问题,假如上游消息始终发送失败(这种可能性基本不存在除非代码是假的)这种情况我们可以设置报警机制比如发生异常时可以打印日志,发送短信,发送邮件,将异常订单保存到数据库,这些措施可以同时用于下游一些异常订单,同时也可以在发生异常的时候新建一个异常Topic的消息提示,让人工来介入数据订正。
如果本篇文章对你有帮助的话请点个赞加关注吧
网友评论