美文网首页
图的最短路径和拓扑排序

图的最短路径和拓扑排序

作者: 左上偏右 | 来源:发表于2017-01-06 11:28 被阅读165次
当前比较行:0,shortTablePath结果:[0, 1, 5, 1000, 1000, 1000, 1000, 1000, 1000]
当前比较行:1,shortTablePath结果:[0, 1, 4, 8, 6, 1000, 1000, 1000, 1000]
当前比较行:2,shortTablePath结果:[0, 1, 4, 8, 5, 11, 1000, 1000, 1000]
当前比较行:4,shortTablePath结果:[0, 1, 4, 7, 5, 8, 11, 14, 1000]
当前比较行:3,shortTablePath结果:[0, 1, 4, 7, 5, 8, 10, 14, 1000]
当前比较行:5,shortTablePath结果:[0, 1, 4, 7, 5, 8, 10, 13, 1000]
当前比较行:6,shortTablePath结果:[0, 1, 4, 7, 5, 8, 10, 12, 17]
当前比较行:7,shortTablePath结果:[0, 1, 4, 7, 5, 8, 10, 12, 16]
当前比较行:8,shortTablePath结果:[0, 1, 4, 7, 5, 8, 10, 12, 16]

拓扑排序

2、图的最短路径


public class DnjavaDijstra {
    private final static int MAXVEX = 9;
    private final static int MAXWEIGHT = 65535;
    private int shortTablePath[] = new int[MAXVEX];// 记录的是v0到某顶点的最短路径和

     /**
     * 获取一个图的最短路径
     * 首先在第一行找出一个最小的值(下标1),表示v0到v1(k=1)的最短路径。
     * 其次在遍历第k行数据,满足没有被标记并且graph[k][j]+min<shortTablePath[j],表示v0到vj存在更小的路径。
     * 重复以上步骤,循环顶点个数减1次。
     */
    public void shortestPathDijstra(Graph graph) {
        int min;//最小值且没确定是最短路径
        int k = 0;// 记录下标
        //与shortTablePath对应,表示每个节点最短路径有没有被确定
        boolean isgetPath[] = new boolean[MAXVEX];
        //获取v0这一行的权值数组
        for (int v = 0; v < graph.getVertexSize(); v++) {
            shortTablePath[v] = graph.getMatrix()[0][v];// 
        }
        shortTablePath[0] = 0;
        isgetPath[0] = true;
        System.out.println("当前比较行:0,shortTablePath结果:"+Arrays.toString(shortTablePath));
        //遍历行,除过第0行(数组)遍历剩余graph.getVertexSize()-1行,不是按照顺序遍历,跟k有关
        for (int l = 1; l < graph.getVertexSize(); l++) {
            
            min = MAXWEIGHT;
            //在shortTablePath数组中查找最小值,且没有被标记过   
            for (int w = 0; w < graph.getVertexSize(); w++) {
                if (!isgetPath[w] && shortTablePath[w] < min) {
                    k = w;
                    min = shortTablePath[w];
                }
            }
            isgetPath[k] = true;
            //当前行的每一列j数据与min之和如果小于shortTablePath[j],说明v0到vv
            for (int j = 0; j < graph.getVertexSize(); j++) {
                if(!isgetPath[j]&&(min+graph.getMatrix()[k][j]<shortTablePath[j])){
                    shortTablePath[j] = min + graph.getMatrix()[k][j];
                }
            }
            System.out.println("当前比较行:"+k+",shortTablePath结果:"
+Arrays.toString(shortTablePath));
        }
        for(int i = 0;i<shortTablePath.length;i++){
            System.out.println("V0到V"+i+"的最短路径为:"+shortTablePath[i]+"\n");
        }
        
    }
    
    public static void main(String[] args){
        Graph graph = new Graph(MAXVEX);
        graph.createGraph();
        DnjavaDijstra dijstra = new DnjavaDijstra();
        dijstra.shortestPathDijstra(graph);
    }
}

3、图的拓扑排序

package com.dn.dijstra;

import java.util.Stack;

public class DnGraphTopologic {
    private int numVertexes;
    private VertexNode []  adjList;//邻接顶点的一维数组
    public DnGraphTopologic(int numVertexes){
        this.numVertexes = numVertexes;
    }
    private void createGraph(){
        VertexNode node0 = new VertexNode(0,"v0");
        VertexNode node1 = new VertexNode(0,"v1");
        VertexNode node2 = new VertexNode(2,"v2");
        VertexNode node3 = new VertexNode(0,"v3");
        VertexNode node4 = new VertexNode(2,"v4");
        VertexNode node5 = new VertexNode(3,"v5");
        VertexNode node6 = new VertexNode(1,"v6");
        VertexNode node7 = new VertexNode(2,"v7");
        VertexNode node8 = new VertexNode(2,"v8");
        VertexNode node9 = new VertexNode(1,"v9");
        VertexNode node10 = new VertexNode(1,"v10");
        VertexNode node11 = new VertexNode(2,"v11");
        VertexNode node12 = new VertexNode(1,"v12");
        VertexNode node13 = new VertexNode(2,"v13");
        adjList = new VertexNode[numVertexes];
        adjList[0] =node0;
        adjList[1] =node1;
        adjList[2] =node2;
        adjList[3] =node3;
        adjList[4] =node4;
        adjList[5] =node5;
        adjList[6] =node6;
        adjList[7] =node7;
        adjList[8] =node8;
        adjList[9] =node9;
        adjList[10] =node10;
        adjList[11] =node11;
        adjList[12] =node12;
        adjList[13] =node13;
        node0.firstEdge = new EdgeNode(11);node0.firstEdge.next = new EdgeNode(5);node0.firstEdge.next.next = new EdgeNode(4);
        node1.firstEdge = new EdgeNode(8);node1.firstEdge.next = new EdgeNode(4);node1.firstEdge.next.next = new EdgeNode(2);
        node2.firstEdge = new EdgeNode(9);node2.firstEdge.next = new EdgeNode(6);node2.firstEdge.next.next = new EdgeNode(5);
        node3.firstEdge = new EdgeNode(13);node3.firstEdge.next = new EdgeNode(2);
        node4.firstEdge = new EdgeNode(7);
        node5.firstEdge = new EdgeNode(12);node5.firstEdge.next = new EdgeNode(8);
        node6.firstEdge = new EdgeNode(5);
        node8.firstEdge = new EdgeNode(7);
        node9.firstEdge = new EdgeNode(11);node9.firstEdge.next = new EdgeNode(10);
        node10.firstEdge = new EdgeNode(13);
        node12.firstEdge = new EdgeNode(9);
    }
    /**
     * 拓扑排序
     * @author Administrator
     * @throws Exception 
     *
     */
    private void topologicalSort() throws Exception{
        Stack<Integer> stack = new Stack<>();
        int count = 0;
        int k = 0;
        for(int i = 0;i<numVertexes;i++ ){
            if(adjList[i].in == 0){
                stack.push(i);
            }
        }
        while(!stack.isEmpty()){
            int pop = stack.pop();
            System.out.println("顶点:"+adjList[pop].data);
            count++;
            for(EdgeNode node = adjList[pop].firstEdge;node!=null;node = node.next){
                k = node.adjVert;//下标
                if(--adjList[k].in == 0){
                    stack.push(k);//入度为0,入栈
                }
            }
        }
        if(count<numVertexes){
            throw new Exception("完犊子了,拓扑排序失败");
        }
    }
    
    //边表顶点
    class EdgeNode{
        private int adjVert;
        private EdgeNode next;
        private int weight;
        public EdgeNode(int adjVert){
            this.adjVert = adjVert;
        }
        public int getAdjVert() {
            return adjVert;
        }
        public void setAdjVert(int adjVert) {
            this.adjVert = adjVert;
        }
        public EdgeNode getNext() {
            return next;
        }
        public void setNext(EdgeNode next) {
            this.next = next;
        }
        public int getWeight() {
            return weight;
        }
        public void setWeight(int weight) {
            this.weight = weight;
        }
        
    }
    
    //邻接顶点
    class VertexNode{
        private int in;//入度
        private String data;
        private EdgeNode firstEdge;
        
        public VertexNode(int in,String data){
            this.in = in;
            this.data = data;
        }

        public int getIn() {
            return in;
        }

        public void setIn(int in) {
            this.in = in;
        }

        public String getData() {
            return data;
        }

        public void setData(String data) {
            this.data = data;
        }

        public EdgeNode getFirstEdge() {
            return firstEdge;
        }

        public void setFirstEdge(EdgeNode firstEdge) {
            this.firstEdge = firstEdge;
        }
        
    }
    
    public static void main(String [] args){
        DnGraphTopologic dnGraphTopologic = new DnGraphTopologic(14);
        dnGraphTopologic.createGraph();
        try {
            dnGraphTopologic.topologicalSort();
        } catch (Exception e) {
            // TODO Auto-generated catch block
            e.printStackTrace();
        }
    }
}

相关文章

  • 图的最短路径和拓扑排序

    拓扑排序 2、图的最短路径 3、图的拓扑排序

  • Graph-一般算法

    和图相关的算法有:最小生成子树,最短路径,拓扑排序。 这里仅介绍最小生成树和最短路径,拓扑排序暂时省略。 最小生成...

  • BFS 的运用

    简单图最短路径 序列化和反序列化 tree 拓扑排序 Topological Sorting Clone Graph

  • 数据结构_图(1_图的概述)

    主要知识点 图的概述 图的存储结构 图的遍历 最小生成树 最短路径 拓扑排序 关键路径 一、图的概述 1.1 图的...

  • 数据结构基础学习之(图)

    主要知识点 图的概述 图的存储结构 图的遍历 最小生成树 最短路径 拓扑排序 关键路径 一、图的概念 图的定义: ...

  • 拓扑排序和关键路径求值

    拓扑排序和关键路径的求值都是对图的应用,严格来说其实是对有向图应用。 我们先来描述一下拓扑排序,拓扑排序就是根据路...

  • 最短路径-有向无环图

    有向无环图最短路径 根据算法基础这本书的思路,先进行拓扑排序,在逐一进行松弛操作。

  • 最长路径算法

    一、定义 最长路径算法类似于基于拓扑排序的最短路径算法。本文只针对加权有向无环图讨论。 二、基本思想 对于一幅加权...

  • 数据结构-图及相关算法

    目录 基本概念及问题图的三种表示方式现实应用图的遍历最短路径 - Dijkstra算法拓扑排序最小生成树 基本概念...

  • 拓扑排序

    拓扑用于有向图; v1 ->v2 的路径 则在拓扑排序中v1必定排在vj之前; 拓扑图 拓扑网的特性:先行关系可以...

网友评论

      本文标题:图的最短路径和拓扑排序

      本文链接:https://www.haomeiwen.com/subject/psitbttx.html