美文网首页JavaScript与数据结构
JavaScript数据结构21—关键路径算法

JavaScript数据结构21—关键路径算法

作者: RichardW | 来源:发表于2017-04-06 09:33 被阅读0次

    关键路径算法的核心依旧是拓扑排序算法,完成关键路径,有以下要完成的东西

    1. 最早发生时间的数组
    • 最迟发生时间的数组
    • 若某个点最早和最迟时间是一致的,则说明了:这是一个关键点,一定在关键路径上面。
    • 点1的最早发生时间 = 点2的最迟发生时间 - 两点之前权值,说明了两个点连线就在关键路径上面。

    关于最早发生时间的计算

    1. 预制一个数组,让每一个点最早时间都是0
    • 从关键路径(用拓扑排序算法算出来)第一个点开始,找到这个点的所有连接的其他点,找到最小的一个连接,更新这个连接对应的端点的最早发生时间;
    • 更新完毕每一个点

    关于最迟发生时间的计算

    1. 预制一个数组,让每一个点最早时间都是最早发生时间中的最大值(也就是数组中的最后一个)
    • 从关键路径(用拓扑排序算法算出来)最后一个点开始,找到这个点的所有连接的其他点,找到最小的一个连接,更新这个连接对应的端点的最迟发生时间;
    • 更新完毕每一个点
    //拓扑排序
    //顶点
    function Vertex(name) {
      this.name =name;
      this.in = 0;
    }
    Vertex.prototype.setFirstedge = function(edgeNode) {
      this.firstEdge = edgeNode;
      edgeNode.adjVex.in++;
    };
    Vertex.prototype.setNext = function(edgeNode){
      var temp = this.firstEdge;
      if(!temp){
        this.firstEdge = edgeNode;
        edgeNode.adjVex.in++;
        return;
      }else{
        while(temp){
          var temp1 = temp.next;
          if(!temp1){
            temp.next = edgeNode;
            edgeNode.adjVex.in++;
            break;
          }else{
            temp = temp.next;
          }
        }
      }
    }
    //边
    function EdgeNode(){
      this.adjVex = arguments[0];
      this.weight = arguments[1] ? arguments[1] : undefined;
    }
    //图
    function Graph(vertexs,numEdges){
      this.vertexs = vertexs;
      this.numVertexs = this.vertexs.length;
      this.numEdges =numEdges;
    }
    //需要引入栈进行计算
    function Node(data) {
        this.data = data;
    }
    function Stack(maxSize){
        this.maxSize = maxSize;
        this.top = -1;
        this.data = new Array(maxSize);
    }
    Stack.prototype.push = function(node){
        if(this.top == this.maxSize-1){
            return 1;
        }
        this.top++;
        this.data[this.top] = node;
        return 0;
    }
    Stack.prototype.pop = function(){
        if(this.top==-1){
            return 1;
        }
        var r = this.data[this.top];
        this.data[this.top] = undefined;
        this.top--;
        return r;
    }
    Stack.prototype.ergodic = function(){
      var s = '';
      for (var i = 0; i < this.data.length; i++) {
        if(this.data[i]!=null){
            s += this.data[i]+',';
        }
      }
      if(s.length){
        s = s.substring(0,s.length-1);
      }
      return s;
    }
    Stack.prototype.length = function(){
      return this.top+1;
    }
    //拓扑序列
    Graph.prototype.topologicalSort = function() {
      var top = 0,count = 0;
      var gettop,k;
      var result ='';//结果
      var stack = new Stack(this.numVertexs);
      var stack2 = new Stack(this.numVertexs);
      var etv = [];
      for (var i = 0; i < this.numVertexs; i++) {
        etv.push(0);
        if(this.vertexs[i].in==0){
          stack.push(i);
        }
      }
      while(stack.length()){
        gettop = stack.pop();
        result += this.vertexs[gettop].name +' ';
        count++;
        stack2.push(gettop);
        for (var e = this.vertexs[gettop].firstEdge; e; e=e.next) {
          k = this.vertexs.indexOf(e.adjVex);
          if(!(--this.vertexs[k].in)){
            stack.push(k);
          }
          if(etv[gettop]+e.weight>etv[k]){
            etv[k] = etv[gettop]+e.weight;
          }
        }
      }
      if(count<this.numVertexs){
        console.info('发生错误,有环路存在');
        return false;
      }
      return {
        etv:etv,
        stack:stack2
      };
    };
    Graph.prototype.criticalPath = function(){
      var topological = this.topologicalSort();
      var etv = topological.etv;//最早发生时间
      var stack = topological.stack;
      console.info('可计算的最早发生时间数组etv:'+etv);
      console.info('拓扑序列:'+stack.ergodic());
      var gettop,k;
      var ltv = new Array(this.numVertexs);//最迟发生时间
      for (var i = 0; i < this.numVertexs; i++) {
        ltv[i] = etv[this.numVertexs-1];
      }
      while(stack.length()){
        gettop = stack.pop();
        for (var e = this.vertexs[gettop].firstEdge; e; e=e.next) {
          k = this.vertexs.indexOf(e.adjVex);
          if(ltv[k]-e.weight<ltv[gettop]){
            ltv[gettop] = ltv[k] - e.weight;
          }
        }
      }
      for (var j = 0; j < this.numVertexs; j++) {
        for (var e = this.vertexs[j].firstEdge; e; e=e.next) {
          k = this.vertexs.indexOf(e.adjVex);
          if(etv[j]==ltv[k]-e.weight){
            console.info(this.vertexs[j].name+'到'+this.vertexs[k].name+'('+e.weight+')');
          }
        }
      }
    }
    var v0 = new Vertex('v0');
    var v1 = new Vertex('v1');
    var v2 = new Vertex('v2');
    var v3 = new Vertex('v3');
    var v4 = new Vertex('v4');
    var v5 = new Vertex('v5');
    var v6 = new Vertex('v6');
    var v7 = new Vertex('v7');
    var v8 = new Vertex('v8');
    var v9 = new Vertex('v9');
    v0.setNext(new EdgeNode(v2,4));
    v0.setNext(new EdgeNode(v1,3));
    v1.setNext(new EdgeNode(v4,6));
    v1.setNext(new EdgeNode(v3,5));
    v2.setNext(new EdgeNode(v5,7));
    v2.setNext(new EdgeNode(v3,8));
    v3.setNext(new EdgeNode(v4,3));
    v4.setNext(new EdgeNode(v7,4));
    v4.setNext(new EdgeNode(v6,9));
    v5.setNext(new EdgeNode(v7,6));
    v6.setNext(new EdgeNode(v9,2));
    v7.setNext(new EdgeNode(v8,5));
    v8.setNext(new EdgeNode(v9,3));
    var g = new Graph([v0,v1,v2,v3,v4,v5,v6,v7,v8,v9],13);
    //g.topologicalSort();
    g.criticalPath();
    

    输出

    可计算的最早发生时间数组etv:0,3,4,12,15,11,24,19,24,27
    拓扑序列:0,1,2,3,4,6,5,7,8,9
    v0到v2(4)
    v2到v3(8)
    v3到v4(3)
    v4到v7(4)
    v7到v8(5)
    v8到v9(3)
    [Finished in 0.1s]

    相关文章

      网友评论

        本文标题:JavaScript数据结构21—关键路径算法

        本文链接:https://www.haomeiwen.com/subject/pwaxattx.html