美文网首页
玩转数据结构之均摊时间复杂度

玩转数据结构之均摊时间复杂度

作者: 付凯强 | 来源:发表于2019-01-31 14:33 被阅读0次

    0. 序言

    如果你对简单的复杂度分析不了解,请跳转阅读:https://www.jianshu.com/p/2d5e5f1bc77e
    如果你想看常见的时间复杂度实例分析,请跳转阅读:https://www.jianshu.com/p/4c8fa84a9393
    阅读本篇文章,建议先跳转阅读:https://www.jianshu.com/p/08d1d509c5db
    如果你对简单的复杂度分析以及常见的时间复杂度以及最好、最坏、平均时间复杂度已经了解,想对均摊时间复杂度有更多的了解,那么你可以阅读本篇文章,一定会让你有所收获。

    1. 简介

    均摊时间复杂度,在我看来,是平均时间复杂度的补充。平均时间复杂度只在某些特殊情况下才会用到,而均摊时间复杂度应用的场景比它更加特殊、更加有限。

    2. 应用场景

     // array 表示一个长度为 n 的数组
     // 代码中的 array.length 就等于 n
     int[] array = new int[n];
     int count = 0;
     
     void insert(int val) {
        if (count == array.length) {
           int sum = 0;
           for (int i = 0; i < array.length; ++i) {
              sum = sum + array[i];
           }
           array[0] = sum;
           count = 1;
        }
    
        array[count] = val;
        ++count;
     }
    

    这段代码实现了往数据中插入数据的功能。当数组没有满的时候,直接插入数据到数组中。当数组满了以后,遍历数组求和,将求和之后的sum值放在数组中的第一位置,然后把count指针指向索引为1的位置,再将新的数据插入。

    我们看下这段代码的最好、最坏、平均时间复杂度。当数组没有满的时候,直接将数据插入数组中即可,这是最理想的情况,所以最好时间复杂度为O(1)。当数组满的时候,需要遍历数组求和,把求和后的数据插入,这是最坏的情况,所以最坏情况的时间复杂度为O(n)。

    平均时间复杂度是多少呢?我们分析下:假设数组的长度是n,根据数据插入的位置的不同,我们可以分为n种情况,每种情况的时间复杂度是O(1).当数组满了的时候插入一个数据,这个时候需要遍历求和,这个时候的时间复杂度是O(n),而n+1种情况发生的概率一样,都是1/n+1。所以根据加权平均计算法,求得的平均时间复杂度是:


    平均时间复杂度

    以上的O(1)是去掉系数和常数得出来的结果。

    但是你会发现这段代码平均时间复杂度的分析并不需要引入概率。我们对比下find示例(https://www.jianshu.com/p/08d1d509c5db)和以上insert示例,发现两者有很大区别:
    ① find函数在极端情况下,复杂度才为O(1),但insert在大部分情况下,时间复杂度都为O(1),只有个别情况下,时间复杂度才是O(n).
    ② insert函数,O(1)时间复杂度的插入和O(n)时间复杂度的插入,出现的频率都是有规律可循的,先是n个O(1)的插入,然后是O(n)的遍历求和插入,接着是1个O(1)的操作,紧跟着是n-1个O(1)的操作,然后循环往复后面三种操作。
    综上你会发现,find操作在执行的时候,你并不知道find操作会执行多少次,因为数据不同,发生的find的概率不同,所以用加权平均时间复杂度分析比较合理,而insert操作在执行的时候,因为有规律可循,所以很多情况下,insert执行插入的位置的概率是100%的O(1),而只有很少情况是O(n)——针对大部分执行100%概率是低阶,很少概率是高阶时间复杂度的情况,我们不适合用平均时间复杂度去分析,这个时候用均摊时间复杂度分析较为合理。

    顾名思义:均摊复杂度,就是把量级高的操作所耗费的时间分担到量级低的操作上,看平摊后的量级是多少。拿上面的例子来说:每次O(n)的遍历求和操作后面,会跟着1次O(1)的插入操作,然后跟着n-1次O(1)的插入操作,所以把耗时多的遍历求和操作的时间均摊到接下来的n次耗时少的操作上,也就是平均执行2次操作,所以这一组连续的操作的均摊复杂度就是O(1)。

    综上:对一个数据结构进行一组连续操作,大部分情况下时间复杂度都很低,只有个别情况下时间复杂度比较高,而且这些操作之间存在前后连贯的时序关系,这个时候,适合运用均摊复杂度分析代码,而此时均摊时间复杂度就等于最好情况时间复杂度。

    3. 后续

    如果大家喜欢这篇文章,欢迎点赞!
    如果想看更多 数据结构 方面的文章,欢迎关注!

    相关文章

      网友评论

          本文标题:玩转数据结构之均摊时间复杂度

          本文链接:https://www.haomeiwen.com/subject/pxgxsqtx.html