美文网首页Redis
Redis 源码分析(三) :dict

Redis 源码分析(三) :dict

作者: fanlv | 来源:发表于2019-08-09 10:58 被阅读0次

    一、什么是dict

    dict (dictionary 字典),通常的存储结构是Key-Value形式的,通过Hash函数对key求Hash值来确定Value的位置,因此也叫Hash表,是一种用来解决算法中查找问题的数据结构,默认的算法复杂度接近O(1),Redis本身也叫Remote Dictionary Server(远程字典服务器),其实也就是一个大字典,它的key通常来说是String类型的,但是Value可以是
    StringSetZSetHashList等不同的类型,下面我们看下dict的数据结构定义。

    二、Redis Dict数据结构

    redis_dict.png

    从上图可以看出与dict相关的关键数据结构有三个,分别是:

    • dict是Redis中的字典结构,包含两个dictht。
    • dictht表示一个Hash表。
    • dictEntry 是Redis中的字典结构,包含两个dictht。

    dictEntry代码如下

    // redis 5.0.2
    typedef struct dictEntry {
        void *key; //key void*表示任意类型指针
        union {//联合体中对于数字类型提供了专门的类型优化
            void *val;
            uint64_t u64;
            int64_t s64;
            double d;
        } v;
        struct dictEntry *next; //next指针,用拉链法解决哈希冲突
    } dictEntry;
    

    dictht代码如下

    // redis 5.0.2
    /* This is our hash table structure. Every dictionary has two of this as we
     * implement incremental rehashing, for the old to the new table. */
    typedef struct dictht {
        dictEntry **table; //数组指针,每个元素都是一个指向dictEntry的指针
        unsigned long size; //表示这个dictht已经分配空间的大小,大小总是2^n
        unsigned long sizemask;//sizemask = size - 1; 是用来求hash值的掩码,为2^n-1
        unsigned long used; //目前已有的元素数量
    } dictht;
    

    dict代码如下

    typedef struct dict {
        dictType *type; //type中定义了对于Hash表的操作函数,比如Hash函数,key比较函数等
        void *privdata; //privdata是可以传递给dict的私有数据     
        dictht ht[2]; //每一个dict都包含两个dictht,一个用于rehash
        long rehashidx; /* rehashing not in progress if rehashidx == -1 */
        unsigned long iterators; /* number of iterators currently running */
    } dict;
    
    typedef struct dictType {
        uint64_t (*hashFunction)(const void *key);// 计算hash值的函数
        void *(*keyDup)(void *privdata, const void *key);// 键复制
        void *(*valDup)(void *privdata, const void *obj);// 值复制
        int (*keyCompare)(void *privdata, const void *key1, const void *key2);// 键比较
        void (*keyDestructor)(void *privdata, void *key);// 键销毁
        void (*valDestructor)(void *privdata, void *obj);// 值销毁
    } dictType;
    

    其实通过上面的三个数据结构,已经可以大概看出dict的组成,数据(Key-Value)存储在每一个dictEntry节点;然后一条Hash表就是一个dictht结构,里面标明了Hash表的size,used等信息;最后每一个Redis的dict结构都会默认包含两个dictht,如果有一个Hash表满足特定条件需要扩容,则会申请另一个Hash表,然后把元素ReHash过来,ReHash的意思就是重新计算每个Key的Hash值,然后把它存放在第二个Hash表合适的位置,但是这个操作在Redis中并不是集中式一次完成的,而是在后续的增删改查过程中逐步完成的,这个叫渐进式ReHash,我们后文会专门讨论。

    hash算法

    redis内置2种hash算法

    • dictGenHashFunction,对字符串进行hash

    • dictGenCaseHashFunction,对字符串进行hash,不区分大小写

        /* The default hashing function uses SipHash implementation
         * in siphash.c. */
        
        uint64_t siphash(const uint8_t *in, const size_t inlen, const uint8_t *k);
        uint64_t siphash_nocase(const uint8_t *in, const size_t inlen, const uint8_t *k);
        
        uint64_t dictGenHashFunction(const void *key, int len) {
            return siphash(key,len,dict_hash_function_seed);
        }
        
        uint64_t dictGenCaseHashFunction(const unsigned char *buf, int len) {
            return siphash_nocase(buf,len,dict_hash_function_seed);
        }
      

    三、Dict的基本操作

    创建Dict

    /* Reset a hash table already initialized with ht_init().
     * NOTE: This function should only be called by ht_destroy(). */
    static void _dictReset(dictht *ht)
    {
        ht->table = NULL;
        ht->size = 0;
        ht->sizemask = 0;
        ht->used = 0;
    }
    
    /* Create a new hash table */
    dict *dictCreate(dictType *type,
            void *privDataPtr)
    {
        dict *d = zmalloc(sizeof(*d));
    
        _dictInit(d,type,privDataPtr);
        return d;
    }
    
    /* Initialize the hash table */
    int _dictInit(dict *d, dictType *type,
            void *privDataPtr)
    {
        _dictReset(&d->ht[0]);
        _dictReset(&d->ht[1]);
        d->type = type;
        d->privdata = privDataPtr;
        d->rehashidx = -1;
        d->iterators = 0;
        return DICT_OK;
    }
    

    需要注意的是创建初始化一个dict时并没有为buckets分配空间,table是赋值为null的。只有在往dict里添加dictEntry节点时才会为buckets分配空间,真正意义上创建一张hash表。

    执行dictCreate后会得到如下布局:

    redis_dict_create.png

    新增 - dictAdd

    #define dictSetVal(d, entry, _val_) do { \
        if ((d)->type->valDup) \
            (entry)->v.val = (d)->type->valDup((d)->privdata, _val_); \
        else \
            (entry)->v.val = (_val_); \
    } while(0)
    
    /* Add an element to the target hash table */
    int dictAdd(dict *d, void *key, void *val)
    {
        dictEntry *entry = dictAddRaw(d,key,NULL);//只在buckets的某个索引里新建一个dictEntry并调整链表的位置,只设置key,不设置不设置val
    
        if (!entry) return DICT_ERR;
        dictSetVal(d, entry, val);
        return DICT_OK;
    }
    
    
    /* Low level add or find:
     * This function adds the entry but instead of setting a value returns the
     * dictEntry structure to the user, that will make sure to fill the value
     * field as he wishes.
     *
     * This function is also directly exposed to the user API to be called
     * mainly in order to store non-pointers inside the hash value, example:
     *
     * entry = dictAddRaw(dict,mykey,NULL);
     * if (entry != NULL) dictSetSignedIntegerVal(entry,1000);
     *
     * Return values:
     *
     * If key already exists NULL is returned, and "*existing" is populated
     * with the existing entry if existing is not NULL.
     *
     * If key was added, the hash entry is returned to be manipulated by the caller.
     */
    dictEntry *dictAddRaw(dict *d, void *key, dictEntry **existing)
    {
        long index;
        dictEntry *entry;
        dictht *ht;
    
        if (dictIsRehashing(d)) _dictRehashStep(d);//判断是否是在rehash,如果是rehash会渐进式reash
    
        /* Get the index of the new element, or -1 if
         * the element already exists. */
        if ((index = _dictKeyIndex(d, key, dictHashKey(d,key), existing)) == -1)
            return NULL;
    
        /* Allocate the memory and store the new entry.
         * Insert the element in top, with the assumption that in a database
         * system it is more likely that recently added entries are accessed
         * more frequently. */
        ht = dictIsRehashing(d) ? &d->ht[1] : &d->ht[0];//如果正在rehash的话存第二个hashtable里面
        entry = zmalloc(sizeof(*entry));
        entry->next = ht->table[index];
        ht->table[index] = entry;
        ht->used++;
    
        /* Set the hash entry fields. */
        dictSetKey(d, entry, key);
        return entry;
    }
    

    主要分为以下几个步骤:

    1. 根据key的hash值找到应该存放的位置(buckets索引)。
    2. 若dict是刚创建的还没有为bucekts分配内存,则会在找位置(_dictKeyIndex)时调用_dictExpandIfNeeded,为dictht[0]expand一个大小为4的buckets;若dict正好到了expand的时机,则会expand它的dictht[1],并将rehashidx置为0打开rehash开关,_dictKeyIndex返回的会是dictht[1]的索引。
    3. 申请一个dictEntry大小的内存插入到buckets对应索引下的链表头部,并给dictEntry设置next指针和key。
    4. 为dictEntry设置value

    删除 - dictDelete

    #define dictCompareKeys(d, key1, key2) \
    (((d)->type->keyCompare) ? \
        (d)->type->keyCompare((d)->privdata, key1, key2) : \
        (key1) == (key2))
        
    /* Remove an element, returning DICT_OK on success or DICT_ERR if the
     * element was not found. */
    int dictDelete(dict *ht, const void *key) {
        return dictGenericDelete(ht,key,0) ? DICT_OK : DICT_ERR;
    }
    
    /* Search and remove an element. This is an helper function for
     * dictDelete() and dictUnlink(), please check the top comment
     * of those functions. */
    static dictEntry *dictGenericDelete(dict *d, const void *key, int nofree) {
        uint64_t h, idx;
        dictEntry *he, *prevHe;
        int table;
    
        if (d->ht[0].used == 0 && d->ht[1].used == 0) return NULL;
    
        if (dictIsRehashing(d)) _dictRehashStep(d);
        h = dictHashKey(d, key);
    
        for (table = 0; table <= 1; table++) {
            idx = h & d->ht[table].sizemask;
            he = d->ht[table].table[idx];//找到key对应的bucket索引
            prevHe = NULL;
            while(he) {
                if (key==he->key || dictCompareKeys(d, key, he->key)) {
                    /* Unlink the element from the list */
                    if (prevHe)
                        prevHe->next = he->next;
                    else
                        d->ht[table].table[idx] = he->next;
                    if (!nofree) {
                        dictFreeKey(d, he);
                        dictFreeVal(d, he);
                        zfree(he);
                    }
                    d->ht[table].used--;
                    return he;
                }
                prevHe = he;
                he = he->next;
            }
            if (!dictIsRehashing(d)) break;
        }
        return NULL; /* not found */
    }
    
    /* Clear & Release the hash table */
    void dictRelease(dict *d)
    {
        _dictClear(d,&d->ht[0],NULL);
        _dictClear(d,&d->ht[1],NULL);
        zfree(d);
    }
    

    修改 - dictReplace

    /* Add or Overwrite:
     * Add an element, discarding the old value if the key already exists.
     * Return 1 if the key was added from scratch, 0 if there was already an
     * element with such key and dictReplace() just performed a value update
     * operation. */
    int dictReplace(dict *d, void *key, void *val)
    {
        dictEntry *entry, *existing, auxentry;
    
        /* Try to add the element. If the key
         * does not exists dictAdd will succeed. */
        entry = dictAddRaw(d,key,&existing);
        if (entry) {
            dictSetVal(d, entry, val);
            return 1;
        }
    
        /* Set the new value and free the old one. Note that it is important
         * to do that in this order, as the value may just be exactly the same
         * as the previous one. In this context, think to reference counting,
         * you want to increment (set), and then decrement (free), and not the
         * reverse. */
        auxentry = *existing;
        dictSetVal(d, existing, val);
        dictFreeVal(d, &auxentry);
        return 0;
    }
    

    查询 - dictFind

    dictEntry *dictFind(dict *d, const void *key)
    {
        dictEntry *he;
        uint64_t h, idx, table;
    
        if (d->ht[0].used + d->ht[1].used == 0) return NULL; /* dict is empty */
        if (dictIsRehashing(d)) _dictRehashStep(d);
        h = dictHashKey(d, key);
        for (table = 0; table <= 1; table++) {
            idx = h & d->ht[table].sizemask;
            he = d->ht[table].table[idx];
            while(he) {
                if (key==he->key || dictCompareKeys(d, key, he->key))
                    return he;
                he = he->next;
            }
            if (!dictIsRehashing(d)) return NULL;
        }
        return NULL;
    }
    

    Rehash

    什么是Rehash

    随着操作的不断执行,hash表保存的键值对会逐渐的增多或者减少,这时就会暴露一些问题。如果hash表很大,但是键值对太少,也就是hash表的负载(dictht->used/dictht->size)太小,就会有大量的内存浪费;如果hash表的负载太大,就会影响字典的查找效率。这时候就需要进行rehash将hash表的负载控制在一个合理的范围。

    什么时候会触发Rehash

    当调用dictAdd为dict添加一个dictEntry节点时候,会_dictKeyIndex找到应该放置在buckets的哪个索引里,在这里会调用_dictExpandIfNeeded检查当前哈希表的空间是需要扩充(Rehash),若满足条件:dictht[0]的dictEntry节点数/buckets的索引数>=1则调用dictExpand,若dictEntry节点数/buckets的索引数>=dict_force_resize_ratio(默认是5),则强制执行dictExpand扩充dictht[1]。

    /* Returns the index of a free slot that can be populated with
     * a hash entry for the given 'key'.
     * If the key already exists, -1 is returned
     * and the optional output parameter may be filled.
     *
     * Note that if we are in the process of rehashing the hash table, the
     * index is always returned in the context of the second (new) hash table. */
    static long _dictKeyIndex(dict *d, const void *key, uint64_t hash, dictEntry **existing)
    {
        unsigned long idx, table;
        dictEntry *he;
        if (existing) *existing = NULL;
    
        /* Expand the hash table if needed */
        if (_dictExpandIfNeeded(d) == DICT_ERR)
            return -1;
        for (table = 0; table <= 1; table++) {
            idx = hash & d->ht[table].sizemask;
            /* Search if this slot does not already contain the given key */
            he = d->ht[table].table[idx];
            while(he) {
                if (key==he->key || dictCompareKeys(d, key, he->key)) {
                    if (existing) *existing = he;
                    return -1;
                }
                he = he->next;
            }
            if (!dictIsRehashing(d)) break;
        }
        return idx;
    }
    
    /* Expand the hash table if needed */
    //判断dictht[1]是否需要扩充(并将dict调整为正在rehash状态);若dict刚创建,则扩充dictht[0]  
    static int _dictExpandIfNeeded(dict *d)
    {
        /* Incremental rehashing already in progress. Return. */
        if (dictIsRehashing(d)) return DICT_OK; //如果正在ReHash,那直接返回OK,其实也表明申请了空间不久。
    
        /* If the hash table is empty expand it to the initial size. */
        if (d->ht[0].size == 0) return dictExpand(d, DICT_HT_INITIAL_SIZE);//如果 0 号哈希表的大小为0,表示还未创建,按照默认大小`DICT_HT_INITIAL_SIZE=4`去创建
    
        /* If we reached the 1:1 ratio, and we are allowed to resize the hash
         * table (global setting) or we should avoid it but the ratio between
         * elements/buckets is over the "safe" threshold, we resize doubling
         * the number of buckets. */
         //如果满足 0 号哈希表used>size &&(dict_can_resize为1 或者 used/size > 5) 那就默认扩两倍大小
        if (d->ht[0].used >= d->ht[0].size &&
            (dict_can_resize ||
             d->ht[0].used/d->ht[0].size > dict_force_resize_ratio))
        {
            return dictExpand(d, d->ht[0].used*2);
        }
        return DICT_OK;
    }
    
    
    /* Expand or create the hash table */
    //三个功能:
    //1.为刚初始化的dict的dictht[0]分配table(buckets)
    //2.为已经达到rehash要求的dict的dictht[1]分配一个更大(下一个2^n)的table(buckets),并将rehashidx置为0
    //3.为需要缩小bucket的dict分配一个更小的buckets,并将rehashidx置为0(打开rehash开关)
    int dictExpand(dict *d, unsigned long size)
    {
        /* the size is invalid if it is smaller than the number of
         * elements already inside the hash table */
        if (dictIsRehashing(d) || d->ht[0].used > size)
            return DICT_ERR;
    
        dictht n; /* the new hash table */
        unsigned long realsize = _dictNextPower(size);////从4开始找大于等于size的最小2^n作为新的slot数量
    
        /* Rehashing to the same table size is not useful. */
        if (realsize == d->ht[0].size) return DICT_ERR;
    
        /* Allocate the new hash table and initialize all pointers to NULL */
        n.size = realsize;
        n.sizemask = realsize-1;
        n.table = zcalloc(realsize*sizeof(dictEntry*));
        n.used = 0;
    
        /* Is this the first initialization? If so it's not really a rehashing
         * we just set the first hash table so that it can accept keys. */
        if (d->ht[0].table == NULL) {//刚创建的dict
            d->ht[0] = n;//为d->ht[0]赋值
            return DICT_OK;
        }
    
        /* Prepare a second hash table for incremental rehashing */
        d->ht[1] = n;
        d->rehashidx = 0;//设置为0表示开始从0号bucket Rehash
        return DICT_OK;
    }
    

    Rehash的过程

    假设一个dict已经有4个dictEntry节点(value分别为"a","b","c","d"),根据key的不同,存放在buckets的不同索引下。


    redis_rehash_1.png

    现在如果我们想添加一个dictEntry,由于d->ht[0].used >= d->ht[0].size (4>=4),满足了扩充dictht[1]的条件,会执行dictExpand。根据扩充规则,dictht[1]的buckets会扩充到8个槽位。


    redis_rehash_2.png

    之后再将要添加的dictEntry加入到dictht[1]的buckets中的某个索引下,不过这个操作不属于dictExpand,不展开了。
    扩充之后的dict的成员变量rehashidx被赋值为0,此后每次CRUD都会执行一次被动rehash把dictht[0]的buckets中的一个链表迁移到dictht[1]中,直到迁移完毕。

    Rehash的方式

    1. 主动Rehash,一毫秒执行一次

       /* Rehash for an amount of time between ms milliseconds and ms+1 milliseconds */
       int dictRehashMilliseconds(dict *d, int ms) {
           long long start = timeInMilliseconds();
           int rehashes = 0;
       
           while(dictRehash(d,100)) {//每次最多执行buckets的100个链表rehash
               rehashes += 100;
               if (timeInMilliseconds()-start > ms) break;
           }
           return rehashes;
       }
      
    2. 被动Rehash,字典的增删改查(CRUD)调用dictAdd,dicFind,dictDelete,dictGetRandomKey等函数时,会调用_dictRehashStep,迁移buckets中的一个非空bucket

    3.  if (dictIsRehashing(d)) _dictRehashStep(d);
      

    rehash函数

    /* Performs N steps of incremental rehashing. Returns 1 if there are still
     * keys to move from the old to the new hash table, otherwise 0 is returned.
     *
     * Note that a rehashing step consists in moving a bucket (that may have more
     * than one key as we use chaining) from the old to the new hash table, however
     * since part of the hash table may be composed of empty spaces, it is not
     * guaranteed that this function will rehash even a single bucket, since it
     * will visit at max N*10 empty buckets in total, otherwise the amount of
     * work it does would be unbound and the function may block for a long time. */
    int dictRehash(dict *d, int n) {
        //int empty_visits = n*10; empty_visits表示每次最多跳过10倍步长的空桶
        //(一个桶就是ht->table数组的一个位置),然后当我们找到一个非空的桶时,
        // 就将这个桶中所有的key全都ReHash到 1 号Hash表。最后每次都会判断是否将所有的key全部ReHash了,
        // 如果已经全部完成,就释放掉ht[0],然后将ht[1]变成ht[0]。
        int empty_visits = n*10; /* Max number of empty buckets to visit. */
        if (!dictIsRehashing(d)) return 0;
    
        while(n-- && d->ht[0].used != 0) {//遍历n个bucket,ht[0]中还有dictEntry
            dictEntry *de, *nextde;
    
            /* Note that rehashidx can't overflow as we are sure there are more
             * elements because ht[0].used != 0 */
            assert(d->ht[0].size > (unsigned long)d->rehashidx);
            while(d->ht[0].table[d->rehashidx] == NULL) {
                //当前bucket为空时跳到下一个bucket并且
                d->rehashidx++;
                if (--empty_visits == 0) return 1;
            }
            //直到当前bucket不为空bucket时
            de = d->ht[0].table[d->rehashidx];
            /* Move all the keys in this bucket from the old to the new hash HT */
            while(de) {//把当前bucket的所有ditcEntry节点都移到ht[1]
                uint64_t h;
    
                nextde = de->next;
                /* Get the index in the new hash table */
                //hash函数算出的值& 新hashtable(buckets)的sizemask,保证h会小于新buckets的size
                h = dictHashKey(d, de->key) & d->ht[1].sizemask;
                de->next = d->ht[1].table[h];//插入到链表的最前面!省时间
                d->ht[1].table[h] = de;
                d->ht[0].used--;
                d->ht[1].used++;
                de = nextde;
            }
            d->ht[0].table[d->rehashidx] = NULL;//当前bucket已经完全移走
            d->rehashidx++;
        }
    
        /* Check if we already rehashed the whole table... */
        if (d->ht[0].used == 0) {
            zfree(d->ht[0].table);//释放掉ht[0].table的内存(buckets)
            d->ht[0] = d->ht[1];//浅复制,table只是一个地址,直接给ht[0]就好
            _dictReset(&d->ht[1]);//ht[1]的table置空
            d->rehashidx = -1;
            return 0;
        }
    
        /* More to rehash... */
        return 1;
    }
    

    安全/非安全迭代器

    safe迭代器:用户在迭代过程中可以对元素进行CRUD
    undsafe迭代器:用户在迭代过程中禁止对元素进行CRUD

    redis在dict结构里增加一个iterator成员,用来表示绑定在当前dict上的safe迭代器数量,dict每次CRUD执行_dictRehashStep时判断一下是否有绑定safe迭代器,如果有则不进行rehash以免扰乱迭代器的迭代,这样safe迭代时字典就可以正常进行CRUD操作了。

    static void _dictRehashStep(dict *d) {
        if (d->iterators == 0) dictRehash(d,1);
    }
    

    unsafe迭代器在执行迭代过程中不允许对dict进行其他操作,如何保证这一点呢?

    redis在第一次执行迭代时会用dictht[0]dictht[1]usedsizebuckets地址计算一个fingerprint(指纹),在迭代结束后释放迭代器时再计算一遍fingerprint看看是否与第一次计算的一致,若不一致则用断言终止进程,生成指纹的函数如下:

    //unsafe迭代器在第一次dictNext时用dict的两个dictht的table、size、used进行hash算出一个结果
    //最后释放iterator时再调用这个函数生成指纹,看看结果是否一致,不一致就报错.
    //safe迭代器不会用到这个
    long long dictFingerprint(dict *d) {
        long long integers[6], hash = 0;
        int j;
    
        integers[0] = (long) d->ht[0].table;//把指针类型转换成long
        integers[1] = d->ht[0].size;
        integers[2] = d->ht[0].used;
        integers[3] = (long) d->ht[1].table;
        integers[4] = d->ht[1].size;
        integers[5] = d->ht[1].used;
    
        /* We hash N integers by summing every successive integer with the integer
         * hashing of the previous sum. Basically:
         *
         * Result = hash(hash(hash(int1)+int2)+int3) ...
         *
         * This way the same set of integers in a different order will (likely) hash
         * to a different number. */
        for (j = 0; j < 6; j++) {
            hash += integers[j];
            /* For the hashing step we use Tomas Wang's 64 bit integer hash. */
            hash = (~hash) + (hash << 21); // hash = (hash << 21) - hash - 1;
            hash = hash ^ (hash >> 24);
            hash = (hash + (hash << 3)) + (hash << 8); // hash * 265
            hash = hash ^ (hash >> 14);
            hash = (hash + (hash << 2)) + (hash << 4); // hash * 21
            hash = hash ^ (hash >> 28);
            hash = hash + (hash << 31);
        }
        return hash;
    }
    

    dictIterator定义

    typedef struct dictIterator {
        dict *d;
        long index;//当前buckets索引,buckets索引类型是unsinged long,而这个初始化会是-1,所以long
        int table, safe;//table是ht的索引只有0和1,safe是安全迭代器和不安全迭代器
        //安全迭代器就等于加了一个锁在dict,使dict在CRUD时ditcEntry不能被动rehash
        dictEntry *entry, *nextEntry;//当前hash节点以及下一个hash节点
        /* unsafe iterator fingerprint for misuse detection. */
        long long fingerprint;//dict.c里的dictFingerprint(),不安全迭代器相关
    } dictIterator;
    

    dictGetIterator:创建一个迭代器

    //默认是new一个unsafe迭代器
    dictIterator *dictGetIterator(dict *d)//获取一个iterator就是为这个dict new一个迭代器
    {
        //不设置成员变量fingerprint,在dictNext的时候才设置。
        dictIterator *iter = zmalloc(sizeof(*iter));
    
        iter->d = d;
        iter->table = 0;
        iter->index = -1;
        iter->safe = 0;
        iter->entry = NULL;
        iter->nextEntry = NULL;
        return iter;
    }
    
    dictIterator *dictGetSafeIterator(dict *d) {
        dictIterator *i = dictGetIterator(d);
    
        i->safe = 1;
        return i;
    }
    

    dictNext:迭代一个dictEntry节点

    虽然safe迭代器会禁止rehash,但在迭代时有可能已经rehash了一部分,所以迭代器也会遍历在dictht[1]中的所有dictEntry。

    参考资料

    Redis源码分析(dict)

    redis源码解读(三):基础数据结构之dict

    Redis源码分析(dict)

    相关文章

      网友评论

        本文标题:Redis 源码分析(三) :dict

        本文链接:https://www.haomeiwen.com/subject/pyecjctx.html