空间类型
对比项 | geometry | geography |
---|---|---|
名称 | 几何对象 | 地理对象 |
坐标系 | 支持平面坐标系和球面坐标系 | 仅支持球面坐标系 |
对象类型 | 支持 POINT、MULTIPOINT、LINESTRING、LINEARRING、MULTILINESTRING、POLYGON、MULTIPOLYGON、POLYHEDRALSURFACE、TRIANGLE、TIN、GEOMETRYCOLLECTION等简单对象,还支持CIRCULARSTRING、COMPOUNDCURVE、CURVEPOLYGON、MULTICURVE、MULTISURFACE | 仅支持POINT、LINESTRING、POLYGON、MULTIPOINT、MULTILINESTRING、MULTIPOLYGON、GEOMETRYCOLLECTION |
函数限制 | 类型较丰富 | 支持类型较少,仅支持类型转换、长度面积距离计算、交并差运算函数 |
索引局限性 | 几何索引不能正确处理极地地区查询 | 地理索引可以正确处理覆盖极点或国际日期变更线的查询 |
元数据 | geometry_columns:提供了数据库中所有空间数据表的描述信息,分别是数据库名、模式名、空间数据表名,属性列名称,几何图形维度,空间参考标识符,几何图形类型 | 无定义的元数据,需自定义 |
根据geometry与geography的特点,在使用时可根据以下情况选择:
geometry | geography |
---|---|
如果数据在地理范围上是紧凑的(包含在州、县或市内),推荐使用基于笛卡尔坐标的geometry类型 | 如果需要测量在地理范围上是分散的数据集(覆盖世界大部分地区)距离,推荐使用geography类型。 |
当做数据存储时,推荐使用geometry | 由于地理坐标较为精确,因此在进行距离、面积等量算时,建议使用geography |
如果用户较为了解投影信息知识,推荐使用geometry | geography不需要了解专业的投影知识只需要知道经纬度就可以进行计算,因此使用门槛较低 |
当场景需要运用大量复杂函数时,推荐使用geometry | geography的支持函数较少,且计算复杂,因此应用时需要占用较多计算资源。 |
插入数据
--创建地理测试表
create table sz_test(
name varchar(255),
geom geometry
);
--点
insert into sz_test(name,geom) values('test1','point(94.656608 40.140608)');
--线
insert into sz_test(name,geom) values('test2','linestring(0 0,0 1,0 2,0 0)');
--面
insert into sz_test(name,geom) values('test3','polygon((0 0,4 0,4 4,0 4,0 0),(1 1, 2 1, 2 2,1 2,1 1))');
--多点
insert into sz_test(name,geom) values('test4','MULTIPOINT(94.656608 40.140608,0 1)');
--多线
insert into sz_test(name,geom) values('test5','MULTILINESTRING((0 0,1 1,1 2),(2 3,3 2,5 4))');
--多面
insert into sz_test(name,geom) values('test6','MULTIPOLYGON(((0 0,4 0,4 4,0 4,0 0),(1 1,2 1,2 2,1 2,1 1)), ((-1 -1,-1 -2,-2 -2,-2 -1,-1 -1))) ');
--几何集合
insert into sz_test(name,geom) values('test7','GEOMETRYCOLLECTION(POINT(2 0),POLYGON((0 0, 1 0,1 1,0 1, 0 0)))');
查询数据
-- 将geometry类型查询出来的数据转换字符串,ST_AsText函数用于转换字符串
select ST_AsText(geom) from sz_test;
-- 获取geomerty类型的x左边和y坐标,并且过滤出点的数据,ST_GeometryType函数获取数据类型
select ST_GeometryType(geom),st_x(geom),st_y(geom) from sz_test where ST_GeometryType(geom)='ST_Point';
-- 返回几何图形的维数
select ST_NDims(geom) from sz_test;
-- 查询几何图形的空间参考标识码,例如4326
select ST_SRID(geom) from sz_test;
-- 返回两个几何或地理值之间的距离,st_distance 计算是弧度,不是米
select st_distance(geo,'srid=4326;point(100.107425 39.165438)') from sync_camera;
-- 查询在1000米范围,
-- ST_Transform 将几何对象转化到指定空间,2415是平面坐标 4326是椭球体坐标
-- ST_distance 换算两个geometry的距离
-- ST_dwithin 判断两个geometry对象是不是,是不是在范围内
select name,ST_distance(geo,ST_GeomFromText('POINT(100.107425 39.165438)', 4326)) as distance,ST_AsText(geo) from sync_camera
where ST_dwithin(ST_Transform(geo,2415), ST_Transform(ST_GeomFromText('POINT(100.107425 39.165438)', 4326),2415), 1000)
-- 获取线的最小值和最大值
select st_xmin(geo),st_ymin(geo),st_xmax(geo),st_ymax(geo),ST_AsText(geo) from sync_camera;
-- 查看线的长度
select st_length(ST_GeomFromText('linestring(100.108183 39.166803,100.111778 39.162805,100.108183 39.166803)'));
-- 查询面的面积
select st_area(st_transform(
ST_SetSRID(ST_GeomFromText(
'POLYGON ((115.440261 33.8547281, 115.4400647 33.8548702,
115.4403265 33.8549768, 115.4404674 33.8549267, 115.4404397 33.8547365,
115.440261 33.8547281))'),4326),4527))
-- 圆的中心点
SELECT ST_AsText(ST_centroid(g))
FROM ST_GeomFromText('CIRCULARSTRING(0 2, -1 1,0 0, 0.5 0, 1 0, 2 1, 1 2, 0.5 2, 0 2)') AS g ;
-- 查询聚合 ,将四至分为x,y轴都分为20等分
SELECT
width_bucket(st_x(geo), 103.823557 ,119.235188 ,20) grid_x,
width_bucket(st_y(geo), 36.058039 , 37.614617, 20) grid_y,
count(*),
st_centroid(st_collect(geo)) geom,
array_agg(id) gids
from sync_camera
where
st_x(geo) between 103.823557 and 119.235188
and
st_y(geo) between 36.058039 and 37.614617
GROUP BY grid_x,grid_y
-- 点转线
select st_astext(st_makeline(array_agg(geo))) from sync_camera;
-- 查询多边形内的点
SELECT count(1),st_x(geo),st_y(geo),geo,name
FROM sync_camera
WHERE ST_Contains(ST_GeomFromText('polygon((105.63903808593751 34.60269355405186,105.70770263671876 34.474863669009004,105.73928833007812 34.56538299699511,105.63903808593751 34.60269355405186))',4326), geo);
-- 查询直线距离50米范围的设备
select p.id,p.name,p.geo from sync_camera p where ST_DWithin(
ST_Transform(ST_GeomFromText('linestring(105.68148136138917 34.56085936708384,105.68369150161744 34.56442881428687)',4326), 2415), ST_Transform( p.geo,2415), 50)
-- 中心点
select st_centroid(ST_GeomFromText('polygon((105.63903808593751 34.60269355405186,105.70770263671876 34.474863669009004,105.73928833007812 34.56538299699511,105.63903808593751 34.60269355405186))',4326)),ST_GeomFromText('polygon((105.63903808593751 34.60269355405186,105.70770263671876 34.474863669009004,105.73928833007812 34.56538299699511,105.63903808593751 34.60269355405186))',4326);
-- 将数据转geojson
select ST_AsGeoJSON(ST_GeomFromText('polygon((105.63903808593751 34.60269355405186,105.70770263671876 34.474863669009004,105.73928833007812 34.56538299699511,105.63903808593751 34.60269355405186))',4326));
-- 查询一千米范围内
select id, name, ST_AsText(geo),ST_Distance(ST_GeomFromText('POINT(105.63903808593751 34.60269355405186)',4326), geo) from sync_camera where ST_DWithin(geo::geography, ST_GeographyFromText('POINT(105.63903808593751 34.60269355405186)'), 1000.0);
-- 聚合器,按不同方式聚合,可以输出点和多边形
SELECT kmean, count(*), ST_SetSRID(ST_Extent(geo), 4326) as bbox
FROM
(
SELECT ST_ClusterKMeans(geo, 10) OVER() AS kmean, ST_Centroid(geo) as geo
FROM sync_camera sc
) tsub
GROUP BY kmean;
-- 聚合点
SELECT kmean, count(*), st_centroid(st_collect(geo)) as bbox
FROM
(
SELECT ST_ClusterKMeans(geo, 20) OVER() AS kmean, ST_Centroid(geo) as geo
FROM sync_camera sc
) tsub
GROUP BY kmean;
-- 网格聚合点
SELECT
array_agg(id) AS ids,
COUNT( geo ) AS count,
ST_Centroid(ST_Collect(geo)) AS center
FROM sync_camera sc
GROUP BY
ST_SnapToGrid( ST_SetSRID(geo, 4326), 22.25, 11.125)
ORDER BY
count DESC
;
更新数据
-- 将x列和y列更新到geometry类型列中,ST_GeomFromText函数是将字符串转geometry类型
update sync_camera set geo=ST_GeomFromText(concat('POINT(',x,' ',y,')'), 4326);
-- 将geo列字段更新,更新面
update building set geo = ST_GeomFromText('POLYGON((121.415703 31.172893,121.415805 31.172664,121.416127 31.172751,121.41603 31.172976,121.415703 31.172893))',4632) where id = 123
-- 更新geom字段的空间坐标系
SELECT UpdateGeometrySRID('sz_test','geom',4326);
常用函数
ST_GeometryType(geometry) —— 返回几何图形的类型
ST_NDims(geometry) —— 返回几何图形的维数
ST_SRID(geometry) —— 返回几何图形的空间参考标识码
点(Points)
ST_X(geometry) —— 返回X坐标
ST_Y(geometry) —— 返回Y坐标
线串(Linestring)
ST_Length(geometry) —— 返回线串的长度
ST_StartPoint(geometry) —— 将线串的第一个坐标作为点返回
ST_EndPoint(geometry) —— 将线串的最后一个坐标作为点返回
ST_NPoints(geometry) —— 返回线串的坐标数量
多边形(Polygon)
ST_Area(geometry) —— 返回多边形的面积
ST_NRings(geometry) —— 返回多边形中环的数量(通常为1个,其他是孔)
ST_ExteriorRing(geometry) —— 以线串的形式返回多边形最外面的环
ST_InteriorRingN(geometry, n) —— 以线串形式返回指定的内部环
ST_Perimeter(geometry) —— 返回所有环的长度
集合(Collection)
ST_NumGeometries(geometry) —— 返回集合中的组成部分的数量
ST_GeometryN(geometry, n) —— 返回集合中指定的组成部分
ST_Area(geometry) —— 返回集合中所有多边形组成部分的总面积
ST_Length(geometry) —— 返回所有线段组成部分的总长度
几何图形输入和输出
①Well-known text(WKT)
-
ST_GeomFromText(text, srid) —— 返回geometry
-
ST_AsText(geometry) —— 返回text
-
ST_AsEWKT(geometry) —— 返回text
②Well-known binary(WKB)
-
ST_GeomFromWKB(bytea) —— 返回geometry
-
ST_AsBinary(geometry) —— 返回bytea
-
ST_AsEWKB(geometry) —— 返回bytea
③Geographic Mark-up Language(GML)
-
ST_GeomFromGML(text) —— 返回geometry
-
ST_ASGML(geometry) —— 返回text
④Keyhole Mark-up Language(KML)
-
ST_GeomFromKML(text) —— 返回geometry
-
ST_ASKML(geometry) —— 返回text
-
ST_AsGeoJSON(geometry) —— 返回text
⑥Scalable Vector Graphics(SVG)
-
ST_AsSVG(geometry) —— 返回text
Spring Jpa Data使用PostGis
pom.xml
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-jpa</artifactId>
</dependency>
<dependency>
<groupId>org.postgresql</groupId>
<artifactId>postgresql</artifactId>
<scope>runtime</scope>
</dependency>
<!--postgis类型和java映射-->
<dependency>
<groupId>org.hibernate</groupId>
<artifactId>hibernate-spatial</artifactId>
<version>${hibernate.version}</version>
</dependency>
application.properties
spring.datasource.url=jdbc:postgresql://192.168.207.120:15432/test?useUnicode=true&characterEncoding=utf-8
spring.datasource.username=postgres
spring.datasource.password=postgres
spring.datasource.driver-class-name=org.postgresql.Driver
spring.datasource.type=com.zaxxer.hikari.HikariDataSource
spring.datasource.hikari.minimum-idle=20
spring.datasource.hikari.idle-timeout=180000
spring.datasource.hikari.maximum-pool-size=1000
spring.datasource.hikari.auto-commit=true
spring.datasource.hikari.pool-name=HeartHikariCP
spring.jpa.database=postgresql
spring.jpa.hibernate.ddl-auto=update
spring.jpa.hibernate.naming.physical-strategy=org.hibernate.boot.model.naming.PhysicalNamingStrategyStandardImpl
#设置postgis方言
spring.jpa.properties.hibernate.dialect=org.hibernate.spatial.dialect.postgis.PostgisPG95Dialect
spring.jpa.show-sql=true
Entity
package com.postgistest.entity;
import lombok.Data;
import org.locationtech.jts.geom.Point;
import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.Id;
import javax.persistence.Table;
import java.io.Serializable;
/**
* @author heliang
* 摄像头实体
*/
@Data
@Entity
@Table(name = "sync_camera")
public class Camera implements Serializable {
@Id
@Column(name = "id")
private String id;
@Column(name = "device_id")
private String deviceId;
@Column(name = "name")
private String name;
private Double x;
private Double y;
@Column(name = "vx_external_id")
private String vxExternalId;
@Column(name = "area_id")
private String areaId;
@Column(name = "vs_device_id")
private String vsDeviceId;
private String source;
@Column(name = "sync_time")
private Long syncTime;
private String type;
private String keywords;
private String description;
//geometry类型
@Column(columnDefinition = "geometry(Point,4326)")
private Point geo;
}
Repository
package com.postgistest.dao;
import com.postgistest.entity.Camera;
import org.locationtech.jts.geom.Point;
import org.springframework.data.jpa.repository.JpaSpecificationExecutor;
import org.springframework.data.jpa.repository.Query;
import org.springframework.data.repository.PagingAndSortingRepository;
import org.springframework.data.repository.query.Param;
import java.util.List;
/**
* 摄像头持久化
* @author heliang
*/
public interface CameraDao extends PagingAndSortingRepository<Camera,String>, JpaSpecificationExecutor<Camera> {
//范围查询
@Query(value="SELECT d.* FROM sync_camera AS d WHERE ST_DWithin(ST_Transform(:point,26986),ST_Transform(geo,26986), :distance)",nativeQuery=true)
public List<Camera> findWithin(@Param("point") Point point, @Param("distance")int distance);
}
service
package com.postgistest.service;
import com.postgistest.dao.CameraDao;
import com.postgistest.entity.Camera;
import org.hibernate.query.NativeQuery;
import org.hibernate.spatial.JTSGeometryType;
import org.hibernate.spatial.dialect.postgis.PGGeometryTypeDescriptor;
import org.hibernate.transform.Transformers;
import org.hibernate.type.StandardBasicTypes;
import org.locationtech.jts.geom.Point;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.domain.Page;
import org.springframework.data.domain.PageRequest;
import org.springframework.data.repository.query.Param;
import org.springframework.stereotype.Service;
import javax.persistence.EntityManager;
import javax.persistence.PersistenceContext;
import javax.persistence.Query;
import java.util.List;
import java.util.Map;
/**
* 摄像头业务
* @author heliang
*/
@Service
public class CameraService {
@PersistenceContext
private EntityManager entityManager;
@Autowired
private CameraDao cameraDao;
//聚合
public List<Map> findCluster(Double minLng, Double maxLng, Double minLat, Double maxLat)
{
StringBuffer sql=new StringBuffer();
sql.append("SELECT ");
sql.append(" width_bucket(st_x(geo),"+minLng+" ,"+maxLng+" ,20) grid_x, ");
sql.append(" width_bucket(st_y(geo), "+minLat+" ,"+maxLat+", 20) grid_y, ");
sql.append(" count(*) total, ");
sql.append(" st_centroid(st_collect(geo)) centerpoint ");
sql.append("from sync_camera ");
sql.append("where");
sql.append(" st_x(geo) between "+minLng+" and "+maxLng+" ");
sql.append(" and ");
sql.append( " st_y(geo) between "+minLat+" and "+maxLat+" ");
sql.append(" GROUP BY grid_x,grid_y ");
//addScalar 方法指定返回值的类型
Query nativeQuery = entityManager.createNativeQuery(sql.toString());
List<Map> resultList = nativeQuery.unwrap(NativeQuery.class)
.addScalar("centerpoint", new JTSGeometryType(PGGeometryTypeDescriptor.INSTANCE_WKB_1)) //指定返回列的类型
.addScalar("grid_x", StandardBasicTypes.DOUBLE)
.addScalar("grid_y",StandardBasicTypes.DOUBLE)
.addScalar("total",StandardBasicTypes.LONG)
.setResultTransformer(Transformers.ALIAS_TO_ENTITY_MAP) //设置每条数据映射成map对象
.getResultList();
return resultList;
}
//分页获取
public List<Camera> findTop10()
{
PageRequest pageable= PageRequest.of(0, 10);
Page<Camera> page=cameraDao.findAll(pageable);
return page.getContent();
}
//点的范围
public List<Camera> findWithin(@Param("point") Point point, @Param("distance")int distance)
{
return cameraDao.findWithin(point,distance);
}
}
Test
@RunWith(SpringRunner.class)
@DataJpaTest
@AutoConfigureTestDatabase(replace = AutoConfigureTestDatabase.Replace.NONE)
class GisDemoApplicationTests {
@Autowired
CameraService cameraService;
@Test
void testDao(){
//获取10条数据
List<Camera> cameraServiceTop10 = cameraService.findTop10();
//查询1000米范围内的摄像头
Point point = new GeometryFactory().createPoint(new Coordinate(100.107425d,39.165438d));
point.setSRID(4326);
List<Camera> cameraServiceWithin = cameraService.findWithin(point, 1000);
//查询聚合点位
List<Map> cameraServiceCluster = cameraService.findCluster(minLng, maxLng, minLat, maxLat);
}
}
网友评论