A brief history of numerical system - Alessandra King
One, two, three, four, five, six, seven, eight, nine, and zero. With just these ten symbols, we can write any rational number imaginable. But why these particular symbols? Why ten of them? And why do we arrange them the way we do?
一、二、三、四、五、六、七、八、九和零。用这十个简单的符号, 我们可以写出任何存在的有理数,但是为什么是这些特殊的符号呢?为什么是十个?还有为什么我们以这样的方式排列它们呢?
symbols [ˈsɪmbəlz] 符号 记号
rational [ˈræʃnəl] 理性的
rational number有理数(整数)
imaginable [ɪˈmædʒɪnəbl]
ADJ (常与 best,worst 等形容词最高级连用)可想象的,想得到的
(用于 every,all 之后,表示强调)(一切)可能存在的,(一切)可能发生的;(用于 no 以后)根本
Numbers have been a fact of life throughout recorded history. Early humans likely counted animals in a flock or members in a tribe using body parts or tally marks.
有史以来,数字一直是生活中必不可少的。早期人类喜欢数用身体部位或计数符号表示一大群动物或者部落的人数。
a fact of life 不可争辩的事实
flock [flɑːk] 一大群
tribe [traɪb] 部落
tally marks [ˈtæli mɑːrks]计数符号
But as the complexity of life increased, along with the number of things to count, these methods were no longer sufficient.
但是生活日渐复杂,伴随要计数的东西数字增加,这些方法就不够用了。
complexity [kəmˈpleksəti] 复杂性
along with [əˈlɔːŋ wɪð] 随着
sufficient [səˈfɪʃnt] 足够的 充足的
So as they developed, different civilizations came up with ways of recording higher numbers. Many of these systems, like Hebrew, and Egyptian numerals, were just extensions o tally marks with new symbols added to represent larger magnitudes of value.
随着发展,不同文明世界都想出了记录更多数量的方法。很多数字系统,如希伯来以及埃及,只是原来计数标记的扩展,加入了用来代更高数量级的新符号。
hebrew [ˈhiːbruː] 希伯来人
numerals [ˈnumərəlz] 数字
extensions [ɪkˈstɛnʃənz] 扩大 增加
magnitudes [ˈmægnəˌtudz] 巨大 重大
网友评论