数据结构基础-二叉树的遍历

作者: 蝉翅的空响 | 来源:发表于2019-01-07 11:09 被阅读13次

    二叉树的基本概念:树是一种类似于链表的数据结构,不过树的一个结点可以指向多个结点。树是一种典型的非线性结构。树是表示具有层次特性的图的结构的一种方法。

    二叉树的结点结构用代码表示:

    public class BinaryTreeNode{
        private int data;
        private BinaryTreeNode left;
        private BinaryTreeNode right;
        public BinaryTreeNode(int val){
            this.data = val;
        }
        public int getData() {
            return data;
        }
        public void setData(int data) {
            this.data = data;
        }
        public BinaryTreeNode getLeft() {
            return left;
        }
        public void setLeft(BinaryTreeNode left) {
            this.left = left;
        }
        public BinaryTreeNode getRight() {
            return right;
        }
        public void setRight(BinaryTreeNode right) {
            this.right = right;
        }
    }
    

    二叉树的遍历

    • 前序遍历:
    • 后序遍历:
    • 中序遍历:
    • 层次遍历:

    前序遍历迭代实现

    private void preOrder(BinaryTreeNode root){
            System.out.print(""+root.getData());
            preOrder(root.getLeft());
            preOrder(root.getRight());
        }
    

    前序非迭代实现

    private void preOrderNoRecursive(BinaryTreeNode root){
            if (root == null) {
                return;
            }
            Stack<BinaryTreeNode> stack = new Stack<>();
            while (true) {
                while (root != null) {
                    System.out.print(""+root.getData());
                    stack.push(root);
                    root = root.getLeft();
                }
                if (stack.isEmpty()) {
                    break;
                }
                root = stack.pop();
                root = root.getRight();
            }
            return;
        }
    

    中序遍历迭代实现

    private void inOrder(BinaryTreeNode root){
            inOrder(root.getLeft());
            System.out.print(""+root.getData());
            inOrder(root.getRight());
        }
    

    中序非迭代实现

    private void inOrderNonRecursive(BinaryTreeNode root){
            if (root == null) {
                return;
            }
            Stack<BinaryTreeNode> stack = new Stack();
            while (true) {
                while (root != null) {
                    stack.push(root);
                    root = root.getLeft;
                }
                if (stack.isEmpty()) {
                    break;
                }
                root = stack.pop();
                System.out.print(""+root.getData());
                root = root.getRight();
            }
        }
    

    后序遍历迭代实现

    private void postOrder(BinaryTreeNode root){
            postOrder(root.getLeft());
            postOrder(root.getRight());
            System.out.print(""+root.getData());
        }
    

    后序非迭代实现

    private void postOrderNonRecursive(BinaryTreeNode root){
            Stack<BinaryTreeNode> stack = new Stack<>();
            while (true) {
                if (root != null) {
                    stack.push(root);
                    root = root.getLeft();
                }else {
                    if (stack.isEmpty()) {
                        System.out.print("empty tree!");
                        return;
                    }else {
                        if(stack.peek().getRight() == null) {
                            root = stack.pop();
                            System.out.print(root.getData());
                            if (root == stack.peek().getRight()) {
                                System.out.print(root.getData());
                                stack.pop();
                            }
                        }
                    }
                    if (!stack.isEmpty()) {
                        root = stack.peek().getRight();
                    }else{
                        root = null;
                    }
                }
            }
        }
    

    层次遍历实现

    private void levelOrder(BinaryTreeNode root){
            if (root == null) {
                return;
            }
            Queue<BinaryTreeNode> queue = new Queue<>();
            BinaryTreeNode head;
            queue.add(root);
            while(!queue.isEmpty()){
                head = queue.remove();
                if (head.getLeft() != null) {
                    queue.add(head.getLeft());
                }
                if (head.getRight() != null) {
                    queue.add(head.getRight());
                }
            }
        }
    

    例题:

    前序遍历结果:ABDEGCF

    中序遍历结果:DBGEACF

    求后序遍历结果?

    public TreeNode createTree(String preOrder, String inOrder){
            if (preOrder.isEmpty()){
                return null;
            }
            char rootValut = preOrder.charAt(0);
            int rootIndex = inOrder.indexOf(rootValut);
            TreeNode root = new TreeNode(rootValue);
            root.setLeft(createTree(preOrder.substring(1,1+rootIndex), inOrder.substring(0,rootIndex)));
            root.setRight(createTree(preOrder.substring(1+rootIndex),inOrder.substring(1 + rootIndex)));
            return root;
        }
    

    同理,得出后序遍历序列。迭代的核心始终是减小问题的规模,和初始情况值,也就是递归结束的情况的值。

    public String postOrder(String preOrder, String inOrder){
            if (preOrder.isEmpty()){
                return null;
            }
            char rootValut = preOrder.charAt(0);
            int rootIndex = inOrder.indexOf(rootValut);
            return postOrder(preOrder.substring(1, 1+rootIndex), inOrder.substring(0, rootIndex)) + 
            postOrder(preOrder.substring(1+rootIndex), inOrder.substring(1 + rootIndex))
            + rootValut;
        }
    

    前序遍历结果:ABDEGCF
    后序遍历结果:DBGEACF

    ?1、构建二叉树唯一吗?
    ?2、不唯一的话有多少个?
    ?3、能够输出全部可能中序吗?

    例题2:
    查找最大元素?
    递归算法:

    private int findMax(BinaryTreeNode root){
            int rootValue,left,right,max = 0;
            if (root != null) {
                rootValue = root.getData();
                left = findMax(root.getLeft());
                right = findMax(root.getRight());
                if (left > right) {
                    max = left;
                }else {
                    max = right;
                }
                if (rootValue > max) {
                    max = rootValue;
                }
            }
            return max;
        }
    

    非递归算法:

    private int findMaxUsingLevelOrder(BinaryTreeNode root){
            int max;
            Queue<BinaryTreeNode> queue = new LinkedList<>();
            BinaryTreeNode tmp;
            queue.offer(root);
    
            while (!queue.isEmpty()) {
                tmp = queue.pop();
                if (tmp.getData() > max) {
                    max = tmp.getData();
                }
                if (tmp.getLeft != null) {
                    queue.offer(tmp.getLeft());
                }
                if (tmp.getRight() != null) {
                    queue.offer(tmp.getRight());
                }
            }
            return max;
        }
    

    例题3:
    搜索某个元素?
    递归算法:

    private boolean findInBinaryTreeNodeRecursion(BinaryTreeNode root, int data){
            if (root == null) {
                return false;
            }
            if (root.getData() == data) {
                return true;
            }
            return findInBinaryTreeNodeRecursion(root.getLeft(),data) || findInBinaryTreeNodeRecursion(root.getRight(),data);
        }
    

    非递归算法:

    private boolean findInBinaryUsingLevelOrder(BinaryTreeNode root, int data){
            Queue<BinaryTreeNode> queue = new LinkedList<>();
            BinaryTreeNode tmp;
            queue.offer(root);
            while(!queue.isEmpth()){
                tmp = queue.poll();
                if (tmp.getData == data) {
                    return true;
                }
                if (tmp.getLeft() != null) {
                    queue.offer(tmp.getLeft());
                }
                if (tmp.getRight() != null) {
                    queue.offer(tmp.getRight());
                }
            }
            return false;
        }
    

    例题4:
    寻找中序遍历时的下一结点?

    首先二叉树的数据结构里要加入一个parent变量,不然是无法解答的:

    private BinaryTreeNode parent;
    public void setLeft(BinaryTreeNode left) {
            this.left = left;
            if (left != null)
            this.left.setParent(this);
        }
    public void setRight(BinaryTreeNode right) {
            this.right = right;
            if (right != null)
            this.right.setParent(this);
        }
    public BinaryTreeNode getParent() {
            return parent;
        }
    public void setParent(BinaryTreeNode parent) {
            this.parent = parent;
        }
    

    分析如图

    例题图解
    public BinaryTreeNode next(BinaryTreeNode node){
            if (node.getRight() != null) {
                node = node.getRight();
                while(node.getLeft() != null){
                    node = node.getLeft();
                }
                return node;
            }else {
                if (node.getParent().getLeft() == node) {
                    return node.getParent();
                }else {
                    while (node.getParent() != null && node.getParent().getLeft() != node) {
                        node = node.getParent();
                    }
                    return node.getParent;
                }
            }
        }
    

    相关文章

      网友评论

        本文标题:数据结构基础-二叉树的遍历

        本文链接:https://www.haomeiwen.com/subject/qdoyrqtx.html