GWAS分析

作者: chaimol | 来源:发表于2018-09-03 15:27 被阅读106次

    GAPIT和Tassle等的对比。

    TASSEL5命令行模式运行方法

    1. 典型的MLM(混合线性模型)分析管道命令如下:
    
           perl run_pipeline.pl
    
           -fork1 -h genotype.hmp -filterAlign -filterAlignMinFreq 0.05        注:导入基因型数据并过滤
    
           -fork2 -r trait.txt                                         注:导入表型数据
    
           -fork3 -r pop_structure.txt -excludeLastTrait               注:导入群体结构数据
    
           -fork4 -k kinship.txt -combine5 -input1 -input2 -input3 -intersect -combine6 -input5 -input4 -mlm -mlmVarCompEst P3D -mlmCompressionLevel None -export result       注:导入kinship矩阵,合并表型、基因型和群体结构,设定MLM参数
    
    
    2. 例子:在此基础上结合批处理实现对基因型数据的MLM分析:
    
    
           perl run_pipeline.pl
    
           -fork1 -h ./hmp/mouse.hmp -filterAlign -filterAlignMinFreq 0.05
    
           -fork2 -r trait.txt
    
           -fork3 -r pop_structure -excludeLastTrait
    
           -fork4 -k kinship -combine5 -input1 -input2 -input3 -intersect -combine6 -input5 -input4 -mlm -mlmVarCompEst P3D -mlmCompressionLevel None -export result
    
    将以上脚本保存为bat格式,放在TASSEL5的安装目录里,其它数据也放在安装目录中。
    
    3.tassel5路径
    nohup /home/guo/tool/tasseladmin-tassel-5-standalone-5100767ae9e7/run_pipeline.pl -fork1 -h All_Merged_1.25M_MAF0.05.hmp -filterAlign -filterAlignMinFreq 0.05 \
    -fork2 -r 2011—.txt\
    -fork3 -r 513lines_27229snps_pop_structure_110608.txt -excludeLastTrait \
    -fork4 -k 513lines_27229snps_kinship_110608.txt -combine5 -input1 -input2 -input3 -intersect -combine6 -input5 -input4 -mlm -mlmVarCompEst P3D -mlmCompressionLevel None -export result &
    
    
    
    4.工作路径:
    /home/fzy/
    /disks/workin/fzy/
    存储路径:
    /disks/backup/fzy/
    
    
    5.提交任务:
    nohup 完整命令行 &
    
    
    /home/guo/tool/tasseladmin-tassel-5-standalone-5100767ae9e7/run_pipeline.pl -fork1 -h All_Merged_1.25M_MAF0.05.hmp -filterAlign -filterAlignMinFreq 0.05 -fork2 -r 2011.txt -fork3 -r 513lines_27229sn
    ps_pop_structure_110608.txt -excludeLastTrait -fork4 -k 513lines_27229snps_kinship_110608.txt -combine5 -input1 -input2 -input3 -intersect -combine6
    -input5 -input4 -mlm -mlmVarCompEst P3D -mlmCompressionLevel None -export result
    
    
    /home/guo/tool/tasseladmin-tassel-5-standalone-5100767ae9e7/run_pipeline.pl -Xms10G -Xmx10G -fork1 -h All_Merged_1.25M_MAF0.05.hmp -filterAlign -filterAlignMinFreq 0.05 -fork2 -r 2011.txt -fork3 -r 513lines_27229snps_pop_structure_110608.txt -excludeLastTrait -fork4 -k 513lines_27229snps_kinship_110608.txt -combine5 -input1 -input2 -input3 -intersect -combine6 -input5 -input4 -mlm -mlmVarCompEst P3D -mlmCompressionLevel None -export result
    
    /home/fzy/tassel3.0_standalone_110430/tassel3.0_standalone/run_pipeline.pl  -Xms10G -Xmx10G -fork1 -h All_Merged_1.25M_MAF0.05.hmp -filterAlign -filterAlignMinFreq 0.05 -fork2 -r 2011.txt -fork3 -r 513lines_27229snps_pop_structure_110608.txt -excludeLastTrait -fork4 -k 513lines_27229snps_kinship_110608.txt -combine5 -input1 -input2 -input3 -intersect -combine6 -input5 -input4 -mlm -mlmVarCompEst P3D -mlmCompressionLevel None -export result
    
    
    

    GAPTI使用方法
    以下内容为R语言,直接保存为test.R
    在终端运行,Rscript test.R即可。

    #!/path/to/Rscript
    #Author:Frank Chai
    #Email:chaimol@163.com
    #this is a code for GWAS analysis.use packages is GAPIT
    #参考网址http://blog.sina.com.cn/s/blog_83f77c940102wg16.html
    #安装包
    source("http://www.bioconductor.org/biocLite.R")
    #options(BioC_mirror="http://mirrors.ustc.edu.cn/bioc/")
    biocLite("multtest",destdir = "~/disk/GWAS/R",lib="~/disk/GWAS/GAPIT/")
    #biocLite("ggbio")
    
    install.packages("gplots",destdir = "~/disk/GWAS/R",lib="~/disk/GWAS/GAPIT/")
    install.packages("LDheatmap",destdir = "~/disk/GWAS/R",lib="~/disk/GWAS/GAPIT/")
    install.packages("genetics",destdir = "~/disk/GWAS/R",lib="~/disk/GWAS/GAPIT/")
    install.packages("ape",destdir = "~/disk/GWAS/R",lib="~/disk/GWAS/GAPIT/")
    install.packages("EMMREML",destdir = "~/disk/GWAS/R",lib="~/disk/GWAS/GAPIT/")
    install.packages("scatterplot3d",destdir = "~/disk/GWAS/R",lib="~/disk/GWAS/GAPIT/")
    
    
    #加载包
    library(multtest)
    library(gplots)
    library(LDheatmap)
    library(genetics)
    library(ape)
    library(EMMREML)
    library(compiler)
    
    source("http://zzlab.net/GAPIT/gapit_functions.txt")
    source("http://zzlab.net/GAPIT/emma.txt")
    setwd("~/disk/GWAS/test/")
    myG <- read.table("mdp_traits_validation.txt",head=TRUE)
    myY <- read.table("mdp_genotype_test.hmp.txt",head=TRUE) 
    myGAPIT <- GAPIT(Y=myY,G=myG,kinship.cluster=c("average","complete","ward"),kinship.group=c("Mean","Max"),SNP.MAF=0,SNP.FDR=1,PCA.total=3,Model.selection=TRUE)
    
    
    

    相关文章

      网友评论

      • Bioture:你好,我想知道表型数据该怎么处理,该是什么样的格式,可以分享给我吗?比如我我又花色:红,白,浅红,绿色。我应该怎么对它们进行数字化处理,以及相应的格式是什么样呢?谢谢。
        chaimol:@khjia 我也不清楚

      本文标题:GWAS分析

      本文链接:https://www.haomeiwen.com/subject/qeqbwftx.html