美文网首页程序员
遗传算法的简单应用

遗传算法的简单应用

作者: 赫尔特 | 来源:发表于2019-12-24 20:06 被阅读0次

    遗传算法采用概率化的寻优方法,在大范围内对解进行优化,不限于局部。遗传算法擅长解决全局最优化问题。
    基本过程可以是:
    (1)随机产生第一代个体
    (2)计算第一代个体的适应度
    (3)循环(达到某个条件跳出)
    1^0根据适应度从这一代中挑选下一代的父母
    2^0杂交产生下一代
    3^0新一代个体发生基因突变
    4^0计算新一代个体的适应度

    下面的这个例子用遗传算法产生指定的字符串“nino is beautiful”

    #include<iostream>
    #include<vector>
    #include<string>
    #include<time.h>
    #include<algorithm>
    using namespace std;
    const int population_size = 100;
    const string genes = " zxcvbnmasdfghjklqwertyuiop"
    "ZXCVBNMASDFGHJKLQWERTYUIOP1234567890";
    const string target = "nino is beautiful";
    //产生随机数
    int random_num(int start, int end)
    {
        int range = (end - start) + 1;
        int random_int = start + (rand() % range);
        return random_int;
    }
    
    //产生随机基因,在变异中使用
    char mutated_genes()
    {
        int len = genes.size();
    int r = random_num(0, len - 1);
    return genes[r];
    }
    
    //产生染色体(由基因组成)
    string create_gnome()
    {
        int len = target.size();
        string gnome = "";
        for (int i = 0; i < len; ++i) {
            gnome += mutated_genes();
        }
        return gnome;
    }
    
    //用一个类来代表一个个体
    class Individual
    {
    public:
        string chromosome;
        int fitness;
        Individual(string chromosome);
        Individual mate(Individual parent2);
        int cal_fitness();
    };
    Individual::Individual(string _chromosome)
    {
        this->chromosome = _chromosome;
        fitness = cal_fitness();
    }
    
    //模仿杂交,产生新个体
    Individual Individual::mate(Individual parent2)
    {
        string child_chromosome = ""; //代表孩子
        int len = chromosome.size();
        for (int i = 0; i < len; ++i) {
            float p = random_num(0, 100) / 100;
            //有0.45的概率插入第一个亲代(爸爸)的基因
            if (p < 0.45)
                child_chromosome += chromosome[i];
            //有0.45的概率插入第二个亲代(妈妈)的基因
            else if (p < 0.9)
                child_chromosome += parent2.chromosome[i];
            //剩下0.1的概率用来基因突变
            else
                child_chromosome += mutated_genes();
        }
        return Individual(child_chromosome);
    }
    //计算适应度(分数)
    int Individual::cal_fitness()
    {
        int len = target.size();
        int fitness = 0;
        for (int i = 0; i < len; ++i) {
            if (chromosome[i] != target[i])
                ++fitness;
        }
        return fitness;
    }
    
    //重载<运算符,用于sort函数
    bool operator <(const Individual&ind1,const Individual&ind2)
    {
        return ind1.fitness < ind2.fitness;
    }
    
    int main()
    {
        srand((unsigned)time(0));
        int generation = 0;
    
        vector<Individual>population;
        bool found = false;
    
        //初始化第一代
        for (int i = 0; i < population_size; ++i) {
            string gnome = create_gnome();
            population.push_back(Individual(gnome));
        }
    
        while (!found) {
            //将适应度(分数)升序排列
            sort(population.begin(), population.end());
            if (population[0].fitness <= 0) {
                found = true;
                break;
            }
            vector<Individual> new_generaton;
            //保留前十个优秀的个体,让他们直接进入第二代
            int s = (10 * population_size) / 100;
            for (int i = 0; i < s; ++i)
                new_generaton.push_back(population[i]);
        //把第一代的前50%用来杂交(包括刚才的前10)
            s = (90 * population_size) / 100;
            for (int i = 0; i < s; ++i) {
                int len = population.size();
                int r = random_num(0, 50);
                Individual parent1 = population[r];
                r = random_num(0, 50);
                Individual parent2 = population[r];
                Individual offspring = parent1.mate(parent2);
                new_generaton.push_back(offspring);
            }
            population = new_generaton;
            ++generation;
            cout << "Generation: " << generation << "\t";
            cout << "String: " << population[0].chromosome << "\t";
            cout << "Fitness: " << population[0].fitness << "\n";
        }
        cout << "Generation: " << generation+1 << "\t";
        cout << "String: " << population[0].chromosome << "\t";
        cout << "Fitness: " << population[0].fitness << "\n";
        return 0;
    }
    

    应用2(寻找最短路径):
    小曾同学要去某城市旅游,该城市有5个景点需要参观,分别为A,B,C,D,E,小曾从酒店出发,最后要回到酒店,每个景点必须要走且只走一遍,景点间的距离(0-酒店,1-A,2-B...)如下表,求最短路径。


    在这里插入图片描述

    应用遗传算法,随机创建100条路径可重复,然后让他们演化到稳定,得出最短路径(概率最大)

    #include<iostream>
    #include<vector>
    #include<string>
    #include<time.h>
    #include<algorithm>
    using namespace std;
    const int population_size = 100;
    const string genes = "ABCDE";
    vector<vector<int>>distances{ {0,482,424,138,458},
    {482,0,158,522,179},{424,158,0,438,303},{138,522,438,0,518},
    {458,179,303,518,0}};
    vector<int>distance_fromstart{ 258,264,319,367,164 };
    //产生随机数
    int random_num(int start, int end)
    {
        int range = (end - start) + 1;
        int random_int = start + (rand() % range);
        return random_int;
    }
    
    //产生随机基因,在基因突变中使用
    char mutated_genes()
    {
        int len = genes.size();
        int r = random_num(0, len - 1);
        return genes[r];
    }
    //因为输入可以保证前面的字符串肯定没有重复,所以只要检查最后一个字符即可
    bool isrepeatstr(string str)
    {
        int len = str.size();
        for (int i = 0; i < len-1; ++i) {
            if (str[len - 1] == str[i])
                return true;
        }
        return false;
    }
    //第一代的随机产生染色体(由基因组成)
    string create_gnome()
    {
        int len = genes.size();
        string gnome = "";
        for (int i = 0; i < len; ++i) {
            gnome += mutated_genes();
            while (isrepeatstr(gnome) == true)
                gnome.back() = mutated_genes();
        }
        return gnome;
    }
    
    //用一个类来代表一个个体
    class Individual
    {
    public:
        string chromosome;
        int fitness;
        Individual(string chromosome);
        Individual mate(Individual parent2);
        int cal_fitness();
    };
    Individual::Individual(string _chromosome)
    {
        this->chromosome = _chromosome;
        fitness = cal_fitness();
    }
    
    //模仿杂交,产生新个体
    Individual Individual::mate(Individual parent2)
    {
        string child_chromosome = ""; //代表孩子
        int len = chromosome.size();
        for (int i = 0; i < len; ++i) {
            float p = random_num(0, 100) / 100;
            //有0.45的概率插入第一个亲代(爸爸)的基因
            if (p < 0.45)
                child_chromosome += chromosome[i];
            //有0.45的概率插入第二个亲代(妈妈)的基因
            else if (p < 0.9)
                child_chromosome += parent2.chromosome[i];
            //剩下0.1的概率用来基因突变
            else
                child_chromosome += mutated_genes();
        }
        return Individual(child_chromosome);
    }
    //计算适应度(分数)
    int Individual::cal_fitness()
    {
        int len = genes.size();
        for (int i = 0; i < len; ++i) {
            for (int j = i+1; j < len; ++j) {
                if (chromosome[i] == chromosome[j])
                    return 10000;
            }
        }
        int fitness = 0;
        fitness += distance_fromstart[chromosome[0] - 'A'];
        for (int i = 1; i < len; ++i) {
            fitness += distances[(chromosome[i] - 'A')][(chromosome[i - 1] - 'A')];
        }
        fitness += distance_fromstart[chromosome[len - 1] - 'A'];
        return fitness;
    }
    
    //重载<运算符,用于sort函数
    bool operator <(const Individual& ind1, const Individual& ind2)
    {
        return ind1.fitness < ind2.fitness;
    }
    
    int main()
    {
        srand((unsigned)time(0));
        int generation = 0;
    
        vector<Individual>population;
        bool found = false;
        //初始化第一代
        for (int i = 0; i < population_size; ++i) {
            string gnome = create_gnome();
            population.push_back(Individual(gnome));
        }
    
        while (!found) {
            //将适应度(分数)升序排列
            sort(population.begin(), population.end());
            if (generation>10000) {
                found = true;
                break;
            } 
            vector<Individual> new_generaton;
            //保留前十个优秀的个体,让他们直接进入第二代
            int s = (10 * population_size) / 100;
            for (int i = 0; i < s; ++i)
                new_generaton.push_back(population[i]);
            //把第一代的前50%用来杂交(包括刚才的前10)
            s = (90 * population_size) / 100;
            for (int i = 0; i < s; ++i) {
                int len = population.size();
                int r = random_num(0, 50);
                Individual parent1 = population[r];
                r = random_num(0, 50);
                Individual parent2 = population[r];
                Individual offspring = parent1.mate(parent2);
                new_generaton.push_back(offspring);
            }
            population = new_generaton;
            ++generation;
            cout << "Generation: " << generation << "\t";
            cout << "String: " << population[0].chromosome << "\t";
            cout << "Fitness: " << population[0].fitness << "\n";
        }
        return 0;
    }
    
    

    还有多元不定方程求正整数解问题,也可以用遗传算法解决。

    Reference:GEEKSFORGEEKS

    相关文章

      网友评论

        本文标题:遗传算法的简单应用

        本文链接:https://www.haomeiwen.com/subject/qggfoctx.html