遗传算法采用概率化的寻优方法,在大范围内对解进行优化,不限于局部。遗传算法擅长解决全局最优化问题。
基本过程可以是:
(1)随机产生第一代个体
(2)计算第一代个体的适应度
(3)循环(达到某个条件跳出)
下面的这个例子用遗传算法产生指定的字符串“nino is beautiful”
#include<iostream>
#include<vector>
#include<string>
#include<time.h>
#include<algorithm>
using namespace std;
const int population_size = 100;
const string genes = " zxcvbnmasdfghjklqwertyuiop"
"ZXCVBNMASDFGHJKLQWERTYUIOP1234567890";
const string target = "nino is beautiful";
//产生随机数
int random_num(int start, int end)
{
int range = (end - start) + 1;
int random_int = start + (rand() % range);
return random_int;
}
//产生随机基因,在变异中使用
char mutated_genes()
{
int len = genes.size();
int r = random_num(0, len - 1);
return genes[r];
}
//产生染色体(由基因组成)
string create_gnome()
{
int len = target.size();
string gnome = "";
for (int i = 0; i < len; ++i) {
gnome += mutated_genes();
}
return gnome;
}
//用一个类来代表一个个体
class Individual
{
public:
string chromosome;
int fitness;
Individual(string chromosome);
Individual mate(Individual parent2);
int cal_fitness();
};
Individual::Individual(string _chromosome)
{
this->chromosome = _chromosome;
fitness = cal_fitness();
}
//模仿杂交,产生新个体
Individual Individual::mate(Individual parent2)
{
string child_chromosome = ""; //代表孩子
int len = chromosome.size();
for (int i = 0; i < len; ++i) {
float p = random_num(0, 100) / 100;
//有0.45的概率插入第一个亲代(爸爸)的基因
if (p < 0.45)
child_chromosome += chromosome[i];
//有0.45的概率插入第二个亲代(妈妈)的基因
else if (p < 0.9)
child_chromosome += parent2.chromosome[i];
//剩下0.1的概率用来基因突变
else
child_chromosome += mutated_genes();
}
return Individual(child_chromosome);
}
//计算适应度(分数)
int Individual::cal_fitness()
{
int len = target.size();
int fitness = 0;
for (int i = 0; i < len; ++i) {
if (chromosome[i] != target[i])
++fitness;
}
return fitness;
}
//重载<运算符,用于sort函数
bool operator <(const Individual&ind1,const Individual&ind2)
{
return ind1.fitness < ind2.fitness;
}
int main()
{
srand((unsigned)time(0));
int generation = 0;
vector<Individual>population;
bool found = false;
//初始化第一代
for (int i = 0; i < population_size; ++i) {
string gnome = create_gnome();
population.push_back(Individual(gnome));
}
while (!found) {
//将适应度(分数)升序排列
sort(population.begin(), population.end());
if (population[0].fitness <= 0) {
found = true;
break;
}
vector<Individual> new_generaton;
//保留前十个优秀的个体,让他们直接进入第二代
int s = (10 * population_size) / 100;
for (int i = 0; i < s; ++i)
new_generaton.push_back(population[i]);
//把第一代的前50%用来杂交(包括刚才的前10)
s = (90 * population_size) / 100;
for (int i = 0; i < s; ++i) {
int len = population.size();
int r = random_num(0, 50);
Individual parent1 = population[r];
r = random_num(0, 50);
Individual parent2 = population[r];
Individual offspring = parent1.mate(parent2);
new_generaton.push_back(offspring);
}
population = new_generaton;
++generation;
cout << "Generation: " << generation << "\t";
cout << "String: " << population[0].chromosome << "\t";
cout << "Fitness: " << population[0].fitness << "\n";
}
cout << "Generation: " << generation+1 << "\t";
cout << "String: " << population[0].chromosome << "\t";
cout << "Fitness: " << population[0].fitness << "\n";
return 0;
}
应用2(寻找最短路径):
小曾同学要去某城市旅游,该城市有5个景点需要参观,分别为A,B,C,D,E,小曾从酒店出发,最后要回到酒店,每个景点必须要走且只走一遍,景点间的距离(0-酒店,1-A,2-B...)如下表,求最短路径。
在这里插入图片描述
应用遗传算法,随机创建100条路径可重复,然后让他们演化到稳定,得出最短路径(概率最大)
#include<iostream>
#include<vector>
#include<string>
#include<time.h>
#include<algorithm>
using namespace std;
const int population_size = 100;
const string genes = "ABCDE";
vector<vector<int>>distances{ {0,482,424,138,458},
{482,0,158,522,179},{424,158,0,438,303},{138,522,438,0,518},
{458,179,303,518,0}};
vector<int>distance_fromstart{ 258,264,319,367,164 };
//产生随机数
int random_num(int start, int end)
{
int range = (end - start) + 1;
int random_int = start + (rand() % range);
return random_int;
}
//产生随机基因,在基因突变中使用
char mutated_genes()
{
int len = genes.size();
int r = random_num(0, len - 1);
return genes[r];
}
//因为输入可以保证前面的字符串肯定没有重复,所以只要检查最后一个字符即可
bool isrepeatstr(string str)
{
int len = str.size();
for (int i = 0; i < len-1; ++i) {
if (str[len - 1] == str[i])
return true;
}
return false;
}
//第一代的随机产生染色体(由基因组成)
string create_gnome()
{
int len = genes.size();
string gnome = "";
for (int i = 0; i < len; ++i) {
gnome += mutated_genes();
while (isrepeatstr(gnome) == true)
gnome.back() = mutated_genes();
}
return gnome;
}
//用一个类来代表一个个体
class Individual
{
public:
string chromosome;
int fitness;
Individual(string chromosome);
Individual mate(Individual parent2);
int cal_fitness();
};
Individual::Individual(string _chromosome)
{
this->chromosome = _chromosome;
fitness = cal_fitness();
}
//模仿杂交,产生新个体
Individual Individual::mate(Individual parent2)
{
string child_chromosome = ""; //代表孩子
int len = chromosome.size();
for (int i = 0; i < len; ++i) {
float p = random_num(0, 100) / 100;
//有0.45的概率插入第一个亲代(爸爸)的基因
if (p < 0.45)
child_chromosome += chromosome[i];
//有0.45的概率插入第二个亲代(妈妈)的基因
else if (p < 0.9)
child_chromosome += parent2.chromosome[i];
//剩下0.1的概率用来基因突变
else
child_chromosome += mutated_genes();
}
return Individual(child_chromosome);
}
//计算适应度(分数)
int Individual::cal_fitness()
{
int len = genes.size();
for (int i = 0; i < len; ++i) {
for (int j = i+1; j < len; ++j) {
if (chromosome[i] == chromosome[j])
return 10000;
}
}
int fitness = 0;
fitness += distance_fromstart[chromosome[0] - 'A'];
for (int i = 1; i < len; ++i) {
fitness += distances[(chromosome[i] - 'A')][(chromosome[i - 1] - 'A')];
}
fitness += distance_fromstart[chromosome[len - 1] - 'A'];
return fitness;
}
//重载<运算符,用于sort函数
bool operator <(const Individual& ind1, const Individual& ind2)
{
return ind1.fitness < ind2.fitness;
}
int main()
{
srand((unsigned)time(0));
int generation = 0;
vector<Individual>population;
bool found = false;
//初始化第一代
for (int i = 0; i < population_size; ++i) {
string gnome = create_gnome();
population.push_back(Individual(gnome));
}
while (!found) {
//将适应度(分数)升序排列
sort(population.begin(), population.end());
if (generation>10000) {
found = true;
break;
}
vector<Individual> new_generaton;
//保留前十个优秀的个体,让他们直接进入第二代
int s = (10 * population_size) / 100;
for (int i = 0; i < s; ++i)
new_generaton.push_back(population[i]);
//把第一代的前50%用来杂交(包括刚才的前10)
s = (90 * population_size) / 100;
for (int i = 0; i < s; ++i) {
int len = population.size();
int r = random_num(0, 50);
Individual parent1 = population[r];
r = random_num(0, 50);
Individual parent2 = population[r];
Individual offspring = parent1.mate(parent2);
new_generaton.push_back(offspring);
}
population = new_generaton;
++generation;
cout << "Generation: " << generation << "\t";
cout << "String: " << population[0].chromosome << "\t";
cout << "Fitness: " << population[0].fitness << "\n";
}
return 0;
}
还有多元不定方程求正整数解问题,也可以用遗传算法解决。
Reference:GEEKSFORGEEKS
网友评论