import numpy as np
import pandas as pd
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import StandardScaler, PolynomialFeatures
from sklearn.pipeline import Pipeline
import matplotlib as mpl
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
import warnings
warnings.filterwarnings("ignore")
if __name__ == "__main__":
f_Iris = open("iris.data")
data = pd.read_csv(f_Iris, header=None)
data[4] = pd.Categorical(data[4]).codes
x, y = np.split(data.values, (4,), axis=1)
# 第0、4列数据
x = x[:, [0,3]]
lr = Pipeline([('sc', StandardScaler()),
('poly', PolynomialFeatures(degree=10)),
('clf', LogisticRegression()) ])
lr.fit(x, y.ravel())
y_hat = lr.predict(x)
y_hat_prob = lr.predict_proba(x)
np.set_printoptions(suppress=True)
print('准确度:%.2f%%' % (100*np.mean(y_hat == y.ravel())))
# 画图
N, M = 200, 200 # 横纵各采样多少个值
x1_min, x1_max = x[:, 0].min(), x[:, 0].max() # 第0列的范围
x2_min, x2_max = x[:, 1].min(), x[:, 1].max() # 第1列的范围
t1 = np.linspace(x1_min, x1_max, N)
t2 = np.linspace(x2_min, x2_max, M)
x1, x2 = np.meshgrid(t1, t2) # 生成网格采样点
x_test = np.stack((x1.flat, x2.flat), axis=1) # 测试点
mpl.rcParams['font.sans-serif'] = ['simHei']
mpl.rcParams['axes.unicode_minus'] = False
cm_light = mpl.colors.ListedColormap(['#FFEC8B', '#A8A8A8', '#1E90FF'])
cm_dark = mpl.colors.ListedColormap(['g', 'r', 'b'])
y_hat = lr.predict(x_test) # 预测值
y_hat = y_hat.reshape(x1.shape) # 使之与输入的形状相同
plt.figure(facecolor='w')
plt.pcolormesh(x1, x2, y_hat, cmap=cm_light) # 预测值的显示
plt.scatter(x[:, 0], x[:, 1], c=y.flat, edgecolors='k', s=50, cmap=cm_dark) # 样本的显示
plt.xlabel(u'花萼长度', fontsize=14)
plt.ylabel(u'花瓣宽度', fontsize=14)
plt.xlim(x1_min, x1_max)
plt.ylim(x2_min, x2_max)
plt.grid()
patchs = [mpatches.Patch(color='#FFEC8B', label='Iris-setosa'),
mpatches.Patch(color='#A8A8A8', label='Iris-versicolor'),
mpatches.Patch(color='#1E90FF', label='Iris-virginica')]
plt.legend(handles=patchs, fancybox=True, framealpha=0.8)
plt.title(u'鸢尾花Logistic回归分类效果', fontsize=17)
plt.show()
网友评论