美文网首页
狄克斯特拉算法的 Python 实现

狄克斯特拉算法的 Python 实现

作者: SingleDiego | 来源:发表于2018-12-13 15:14 被阅读12次

    我们用上图的例子来用 Python 实现狄克斯特拉算法

    首先我们用代码实现三张散列表,Graph表、Costs表、Parents表:

    Graph表

    Graph表记录节点间的关系和权重。

    Costs表

    Costs表记录到达改节点的耗时。

    Parents表

    Parents表记录节点和父节点的关系。




    创建 Graph 表

    拿图的一部分为例,如起点和A点B点

    graph = {}
    graph["start"] = {}
    graph["start"]["a"] = 6
    graph["start"]["b"] = 2
    

    graph 为多个散列表的嵌套:

    {
        'start': {'a': 6, 'b': 2}
    }
    

    获取 start 的相邻节点:

    >>> graph['start'].keys()
    dict_keys(['a', 'b'])
    

    获取权重:

    >>> graph['start']['a']
    6
    >>> graph['start']['b']
    2
    

    完整的 graph表是这样的:

    # the graph
    graph = {}
    graph["start"] = {}
    graph["start"]["a"] = 6
    graph["start"]["b"] = 2
    
    graph["a"] = {}
    graph["a"]["fin"] = 1
    
    graph["b"] = {}
    graph["b"]["a"] = 3
    graph["b"]["fin"] = 5
    
    graph["fin"] = {} # 没有相邻节点
    
    # graph
    {
        'start': {'b': 2, 'a': 6}, 
        'b': {'fin': 5, 'a': 3}, 
        'a': {'fin': 1}, 
        'fin': {}
        }
    




    创建 Costs 表和 Parents 表

    Costs 表:

    # the costs table
    infinity = float("inf") # 无限大
    costs = {}
    costs["a"] = 6
    costs["b"] = 2
    costs["fin"] = infinity
    

    Parents 表:

    # the parents table
    parents = {}
    parents["a"] = "start"
    parents["b"] = "start"
    parents["fin"] = None
    

    最后创建一个数组记录已处理过的节点:

    # 记录已处理的节点
    processed = []
    




    我们要实现的算法的思路流程图如下:

    代码实现:

    # the graph
    graph = {}
    graph["start"] = {}
    graph["start"]["a"] = 6
    graph["start"]["b"] = 2
    
    graph["a"] = {}
    graph["a"]["fin"] = 1
    
    graph["b"] = {}
    graph["b"]["a"] = 3
    graph["b"]["fin"] = 5
    
    graph["fin"] = {}
    
    # the costs table
    infinity = float("inf")
    costs = {}
    costs["a"] = 6
    costs["b"] = 2
    costs["fin"] = infinity
    
    # the parents table
    parents = {}
    parents["a"] = "start"
    parents["b"] = "start"
    parents["fin"] = None
    
    processed = []
    
    
    def find_lowest_cost_node(costs):
        """
        传入参数 costs 表
        根据当时 costs 表的记录返回消耗最低的节点
        """
        lowest_cost = float("inf")
        lowest_cost_node = None
    
        # 遍历 costs 表中各节点,找出消耗最低的
        for node in costs:
            cost = costs[node]
            if cost < lowest_cost and node not in processed:
                lowest_cost = cost
                lowest_cost_node = node
        return lowest_cost_node
    
    
    # 在未处理节点中找出消耗最小的
    node = find_lowest_cost_node(costs)
    
    # 如果所有节点都被处理过,循环结束
    while node is not None:
        # 从 costs 表中获得该节点的消耗
        cost = costs[node] 
        # 从 graph 表得到该节点的相邻节点
        neighbors = graph[node] 
    
        # 再用一个循环,遍历该节点的相邻节点
        for n in neighbors.keys():
            # 新节点的消耗 = 父节点的消耗 + 父节点到新节点的权重
            new_cost = cost + neighbors[n]
            # 如果新节点消耗比原来低
            if costs[n] > new_cost:
                # 更新 costs 表
                costs[n] = new_cost
                # 更新 parents 表
                parents[n] = node
        # 把节点记录为已处理
        processed.append(node)
        # 找到下一个要处理的节点
        node = find_lowest_cost_node(costs)
    
    # 最后把 costs 表和 parents 表打印出来
    print(costs)
    print(parents)
    

    执行结果:

    {'fin': 6, 'b': 2, 'a': 5}
    {'fin': 'a', 'b': 'start', 'a': 'b'}
    

    相关文章

      网友评论

          本文标题:狄克斯特拉算法的 Python 实现

          本文链接:https://www.haomeiwen.com/subject/qkqphqtx.html