我们用上图的例子来用 Python 实现狄克斯特拉算法
首先我们用代码实现三张散列表,Graph表、Costs表、Parents表:
Graph表Graph表记录节点间的关系和权重。
Costs表Costs表记录到达改节点的耗时。
Parents表Parents表记录节点和父节点的关系。
创建 Graph 表
拿图的一部分为例,如起点和A点B点
graph = {}
graph["start"] = {}
graph["start"]["a"] = 6
graph["start"]["b"] = 2
graph 为多个散列表的嵌套:
{
'start': {'a': 6, 'b': 2}
}
获取 start 的相邻节点:
>>> graph['start'].keys()
dict_keys(['a', 'b'])
获取权重:
>>> graph['start']['a']
6
>>> graph['start']['b']
2
完整的 graph表是这样的:
# the graph
graph = {}
graph["start"] = {}
graph["start"]["a"] = 6
graph["start"]["b"] = 2
graph["a"] = {}
graph["a"]["fin"] = 1
graph["b"] = {}
graph["b"]["a"] = 3
graph["b"]["fin"] = 5
graph["fin"] = {} # 没有相邻节点
# graph
{
'start': {'b': 2, 'a': 6},
'b': {'fin': 5, 'a': 3},
'a': {'fin': 1},
'fin': {}
}
创建 Costs 表和 Parents 表
Costs 表:
# the costs table
infinity = float("inf") # 无限大
costs = {}
costs["a"] = 6
costs["b"] = 2
costs["fin"] = infinity
Parents 表:
# the parents table
parents = {}
parents["a"] = "start"
parents["b"] = "start"
parents["fin"] = None
最后创建一个数组记录已处理过的节点:
# 记录已处理的节点
processed = []
我们要实现的算法的思路流程图如下:
代码实现:
# the graph
graph = {}
graph["start"] = {}
graph["start"]["a"] = 6
graph["start"]["b"] = 2
graph["a"] = {}
graph["a"]["fin"] = 1
graph["b"] = {}
graph["b"]["a"] = 3
graph["b"]["fin"] = 5
graph["fin"] = {}
# the costs table
infinity = float("inf")
costs = {}
costs["a"] = 6
costs["b"] = 2
costs["fin"] = infinity
# the parents table
parents = {}
parents["a"] = "start"
parents["b"] = "start"
parents["fin"] = None
processed = []
def find_lowest_cost_node(costs):
"""
传入参数 costs 表
根据当时 costs 表的记录返回消耗最低的节点
"""
lowest_cost = float("inf")
lowest_cost_node = None
# 遍历 costs 表中各节点,找出消耗最低的
for node in costs:
cost = costs[node]
if cost < lowest_cost and node not in processed:
lowest_cost = cost
lowest_cost_node = node
return lowest_cost_node
# 在未处理节点中找出消耗最小的
node = find_lowest_cost_node(costs)
# 如果所有节点都被处理过,循环结束
while node is not None:
# 从 costs 表中获得该节点的消耗
cost = costs[node]
# 从 graph 表得到该节点的相邻节点
neighbors = graph[node]
# 再用一个循环,遍历该节点的相邻节点
for n in neighbors.keys():
# 新节点的消耗 = 父节点的消耗 + 父节点到新节点的权重
new_cost = cost + neighbors[n]
# 如果新节点消耗比原来低
if costs[n] > new_cost:
# 更新 costs 表
costs[n] = new_cost
# 更新 parents 表
parents[n] = node
# 把节点记录为已处理
processed.append(node)
# 找到下一个要处理的节点
node = find_lowest_cost_node(costs)
# 最后把 costs 表和 parents 表打印出来
print(costs)
print(parents)
执行结果:
{'fin': 6, 'b': 2, 'a': 5}
{'fin': 'a', 'b': 'start', 'a': 'b'}
网友评论